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Introduction

When using neural networks to learn simple arithmetic problems, such as counting, multiplication, or 
comparison they systematically fail to extrapolate onto unseen ranges. The absence of inductive bias 
makes it difficult for neural networks to extrapolate well on arithmetic tasks as they lack the 
underlying logic to represent the required operations.

A recently proposed model, called NALU [Trask et al., 2018], attempts to solve the problem of 
arithmetic extrapolation. However, for arithmetic extrapolation there are no broadly accepted 
guidelines for evaluating model performance. As a result, single-instance MSE is used for comparison.

As exact extrapolation requires correctly solving a logical problem we advocate that the performance 
metrics of interest should be: 1) has it learned the underlying logic, 2) how often does it learn the 
correct solution, and 3) how fast does it converge?

We present results for 4800 experiments, all instances are trained with default Adam. The validation 
dataset is fixed with 104 observations sampled from the interpolation range. The test dataset is fixed 
with 104 observations sampled from the extrapolation range.
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Effect of Parameters: Shows the effect of the dataset parameters or increasing the hidden size of 
the second NALU or the NAC• layer. Metrics are success-rate, when models converged, and 
sparsity error, reported with a 95% confidence interval of the mean, using 50 different initialization 
seeds. Unless explicitly changed the parameters are: imput size = 100, overlap ratio = 0.5, subset 
ratio  = 0.25, interpolation range = U[1,2].

Effect of Dataset Operation: Metrics are success-rate, when models converged, and sparsity 
error, reported with a 95% confidence interval of the mean, using 100 different initialization seeds. 
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The Neural Arithmetic Logic Unit (NALU) [Trask et al., 2018] consists of two sub-units; the NAC+ 
and NAC•. The sub-units represent either the {+,–} or the {×,÷} operations. The NALU then 
assumes that either NAC+ or NAC• will be selected exclusively, using a sigmoid gating-mechanism.

The matrices W and M, are combined using a tanh-sigmoid transformation to bias the parameters 
towards a {-1,0,1} solution.

The  NALU  combines these units with a gating mechanism  z = g·NAC+ + (1 – g)·NAC•   given 
g = σ(Gx). Thus allowing NALU to decide between all of the {+,–,×,÷} operations using 
backpropagation.

The "Simple Function Learning Tasks" is a synthetic dataset that tests arithmetic extrapolation. The 
problem is defined as summing two random subsets of x followed by an arithmetic operation 
{+,–,×,÷} on these sums. Extrapolation can then be tested by modifying the sampling range of x.

Simple Function Task: Shows how the dataset is parametized into, subset (ratio), overlap 
(ratio), input size (integer), operation (one of {+,–,×,÷}). 

As logic is discrete, a solution to the problem is either correct or wrong. To evaluate a solution we 
propose comparing the MSE, of the entire testset, to the MSE of a nearly-perfect solution on the 
extrapolation range.

To evaluate a solution we propose comparing the MSE, of the entire testset, to the MSE of a nearly-
perfect solution on the extrapolation range. The nearly-perfect solution is defined as performing the 
operation perfectly, but allowing a small error in the sum-of-subsets. This threshold can be simulated 
with                                             for N = 1000000,  where  Wϵ = W* ± ϵ  and W* is the 
perfect W required to compute the optimal solution. We set ϵ= 10–5.

Using a success-criterion has the advantage of being more interpretable, models that failed to converge 
will not obscure the mean, and as the number of successes will follow a binomial distribution we can 
calculate a confidence interval [Wilson, 1927]. With a success-criterion we can also evaluate when a 
model succeeds and report a 95% confidence intervals, by using a gamma distribution and maximum 
likelihood profiling.

Finally, the parameters of the NALU are said to be "biased to be close to -1, 0, -1" [Trask, et al., 
2018]. To test, we measure a sparsity error of the NALU parameters with maxi min(|Wi|, |1 - |Wi||). 
A 95% confidence interval is produced using a beta distribution with support in [0, 0.5].
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Solved at iteration step
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