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Interpretability

“The ability to explain or present 
(a model or dataset) 

in understandable terms 
to a human.”

Doshi-Velez, F., & Kim, B (2017). 
Towards A Rigorous Science of Interpretable Machine Learning.
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Use cases
Identify model issues Scientific discoveryIdentify actionable fixes

Only people with a 
CS degree are 

qualified typists [1].

[1] Fuller, J. (2021). Companies Need More 
Workers. Why Do They Reject Millions of 
Résumés? The Project on Workforce.
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Post-hoc Interpretability for Neural NLP: A Survey

ANDREAS MADSEN∗, SIVA REDDY†‡, and SARATH CHANDAR∗§,Mila, Canada

Neural networks for NLP are becoming increasingly complex and widespread, and there is a growing concern
if these models are responsible to use. Explaining models helps to address the safety and ethical concerns
and is essential for accountability. Interpretability serves to provide these explanations in terms that are
understandable to humans. Additionally, post-hoc methods provide explanations after a model is learned and
are generally model-agnostic. This survey provides a categorization of how recent post-hoc interpretability
methods communicate explanations to humans, it discusses each method in-depth, and how they are validated,
as the latter is often a common concern.

CCS Concepts: • Computing methodologies→ Natural language processing; Neural networks.

Additional Key Words and Phrases: Interpretability, Transparency, Post-hoc explanations.
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1 INTRODUCTION
Large neural NLP models, most notably BERT-like models [20, 36, 70], have become highly wide-
spread, both in research and industry applications [134]. This increase of model complexity is
motivated by a general correlation between model size and test performance [20, 56]. Due to their
immense complexity, these models are generally considered black-box models. A growing concern
is therefore if it is responsible to deploy these models.
Concerns such as safety, ethics, and accountability are particularly important when machine

learning is used for high-stakes decisions, such as healthcare, criminal justice, !nance, etc. [102],
including NLP-focused applications such as translation, dialog systems, resume screening, search,
etc. [38]. For many of these applications, neural models have been shown to exhibit unwanted
biases and similar ethical issues [16, 20, 42, 75, 83, 102].

Doshi-Velez and Kim [37] argue, among others [68], that these ethical and safety issues stem from
an “incompleteness in the problem formalization”. While these issues can be partially prevented
with robustness and fairness metrics, it is often not possible to consider all failure modes. Therefore,
quality assessment should also be done through model explanations. Furthermore, when models do
fail in critical applications, explanations must be provided to facilitate the accountability process.
Providing these explanations is often a core motivation for interpretability. In Section 2 we provide
aditional motivating factors.
Doshi-Velez and Kim [37] de!ne interpretability as the “ability to explain or to present in un-

derstandable terms to a human”. However, what constitutes as an “understandable” explanation is
an interdisciplinary question. An important work from social science by Miller [79], argues that
e!ective explanations must be selective in the sense one must select “one or two causes from a
sometimes in!nite number of causes”. Such observation necessitates organizing interpretability
methods by how and what they selectively communicate.
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abstraction
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input
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adversarial
examples

influential
examples

counter-
factuals

natural
language

class explanation

concepts

global explanation

vocabulary

ensemble

linguistic
information

rules

post-hoc

black-box dataset gradient embeddings white-box

intrinsic

model specific

Occlusion
-based § 2.5.2

Gradient
-based § 2.5.1

Attenton
-based § 2.5.3

SEAM § A.1.2 HotFlip § A.1.1

Influence FunctionsH § A.2.1
TracInC § A.2.3 Representer Pointers† § A.2.2 Prototype

Networks

PolyjuiceM,D

§ 2.6.1 MiCEM § 2.6.2

predict-then-
explainM § 2.7.2

explain-then-
predictM § 2.7.1

NIED § A.3.1

Project § A.4.1,
Rotate § A.4.2

SP-LIME § A.5.1

Behavioral
ProbesD § A.6.1

Structural
ProbesD § A.6.2

Structural
ProbesD § A.6.2

Auxiliary
TaskD

SEARM § A.7.1 Compositional Explanations of Neurons† § A.7.2

Table 2.1 Overview of post-hoc interpretability methods, where § indicates the section the
method is discussed. Rows describe how the explanation is communicated, while columns
describe what information is used to produce the explanation. The order of both rows and
columns indicates the level of abstraction and amount of information, respectively. However,
this order is only approximate.
Columns: Black-box : the method only evaluates the model. Dataset: the method has access
to all training and validation observations. Gradient: the gradient of the model is computed.
Embeddings: the method uses the word embedding matrix. White-box: the method knows
everything about the model, such as all weights and all operations. However, the method is not
specific to a particular architecture. Model specific: the method is specific to the architecture.
Note that neural models in NLP are usually di!erentiable and have an embedding matrix.
We therefore do not consider these as architectural constraints.
Superscript: C: Depends on checkpoints during training. D: Depends on supplementary
dataset. H: Depends on second-order derivative. M: Depends on supplementary model. †:
Depends only on dataset and white-box access.
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Neural networks for NLP are becoming increasingly complex and widespread, and there is a growing concern
if these models are responsible to use. Explaining models helps to address the safety and ethical concerns
and is essential for accountability. Interpretability serves to provide these explanations in terms that are
understandable to humans. Additionally, post-hoc methods provide explanations after a model is learned and
are generally model-agnostic. This survey provides a categorization of how recent post-hoc interpretability
methods communicate explanations to humans, it discusses each method in-depth, and how they are validated,
as the latter is often a common concern.
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1 INTRODUCTION
Large neural NLP models, most notably BERT-like models [20, 36, 70], have become highly wide-
spread, both in research and industry applications [134]. This increase of model complexity is
motivated by a general correlation between model size and test performance [20, 56]. Due to their
immense complexity, these models are generally considered black-box models. A growing concern
is therefore if it is responsible to deploy these models.
Concerns such as safety, ethics, and accountability are particularly important when machine

learning is used for high-stakes decisions, such as healthcare, criminal justice, !nance, etc. [102],
including NLP-focused applications such as translation, dialog systems, resume screening, search,
etc. [38]. For many of these applications, neural models have been shown to exhibit unwanted
biases and similar ethical issues [16, 20, 42, 75, 83, 102].

Doshi-Velez and Kim [37] argue, among others [68], that these ethical and safety issues stem from
an “incompleteness in the problem formalization”. While these issues can be partially prevented
with robustness and fairness metrics, it is often not possible to consider all failure modes. Therefore,
quality assessment should also be done through model explanations. Furthermore, when models do
fail in critical applications, explanations must be provided to facilitate the accountability process.
Providing these explanations is often a core motivation for interpretability. In Section 2 we provide
aditional motivating factors.
Doshi-Velez and Kim [37] de!ne interpretability as the “ability to explain or to present in un-

derstandable terms to a human”. However, what constitutes as an “understandable” explanation is
an interdisciplinary question. An important work from social science by Miller [79], argues that
e!ective explanations must be selective in the sense one must select “one or two causes from a
sometimes in!nite number of causes”. Such observation necessitates organizing interpretability
methods by how and what they selectively communicate.
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Positive 
sentiment

model

2

1

Disagreement problem
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[2] Doshi-Velez, F., & Kim, B (2017). 
Towards A Rigorous Science of Interpretable Machine Learning.

“How accurately it (the explanation) reflects 
the true reasoning process of the model.”

How useful is the explanation to 
humans.

Desirables

14

faithfulness [1] human-groundedness [2]

[1] Jacovi, A., & Goldberg, Y. (2020). Towards Faithfully Interpretable NLP 
Systems: How Should We Define and Evaluate Faithfulness? ACL 2020



Ross, A., Marasović, A., & Peters, M. (2021). Explaining NLP Models via 
Minimal Contrastive Editing (MiCE). Findings of the Association for 
Computational Linguistics: ACL-IJCNLP 2021

20 Andreas Madsen, Siva Reddy, and Sarath Chandar

9.2 MiCE
Like Polyjuice [135], MiCE [101] also uses an auxiliary model to generate counterfactuals. However,
unlike Polyjuice, MiCE does not depend on auxiliary datasets and the counterfactual generation is
more tied to the model being explained, rather than just using the model’s predictions to !lter the
counterfactual examples.
The counterfactual generator is a T5 model [93], a sequence-to-sequence model, which is !ne-

tuned by input-output-pairs, where the input consists of the gold label and the masked sentence,
while the output is the masking answer, see (17) for an example.

𝐿𝑀𝑁𝑂𝑃 = “label: positive︸⨌⨌⨌︷︷⨌⨌⨌︸
gold label

, input: This movie is [BLANK]!︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸
masked sentence

”

𝑃𝑄𝑅𝑆𝑇𝑃 = “[CLR] really great︸⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌︸
masking answer

[EOS]”
(17)

TheMiCE approach to selecting which tokens tomask is to use an importance measure, speci!cally
the gradient w.r.t. the input, and then mask the top x% most important consecutive tokens.

For generating counterfactuals, MiCE again masks tokens based on the importance measure, but
then also inverts the gold label used for the T5-input (17). This way the model will attempt to in!ll
the mask, such that the sentence will have an opposite semantic meaning. This process is then
repeated via a beam-search algorithm which stops when the model prediction changes, an example
of this can be seen in Figure 11.

pos

neg we never feel anything for these characters

the year 's best and most unpredictable comedy 0.91

0.95

the year 's worst and most predictable comedy 0.04

 we can feel anything for these animals 0.01

the year 's worst and most unpredictable comedy 0.59

 we can feel anything for these characters 0.73

-

-

-

-

Fig. 11. Hypothetical visualization of howMiCE progressively creates a counterfactual x̃ from an original
sentence x. The highlight shows the gradient →x 𝑈 (x;𝑉 )𝐿 , which MiCE uses to know what tokens to replace.

BecauseMiCE uses the model prediction to stop the beam-search, it will inherently be somewhat
functionally-grounded. However, it may be that using the gradient as the importance measure, is not
functionally-grounded. Ross et al. [101] validate that using the gradient is functionally-grounded, by
looking at the number of edits and "uency of MiCE and compare it to a version of MiCE where
random tokens are masked. They !nd that using the gradient signi!cantly improves both "uency
and reduces the number of edits it takes to change a prediction.

9.3 Discussion
Groundedness. While counterfactual examples are great for human-grounded explanation, they

struggle with functionally-groundedness. The challenge comes from the desirables. On one side, a
desirable is to provide a counterfactual example with the opposite gold label, an objective that is

Pre-print
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Abstract

Model interpretability methods are often used
to explain NLP model decisions on tasks such
as text classification, where the output space
is relatively small. However, when applied to
language generation, where the output space
often consists of tens of thousands of tokens,
these methods are unable to provide informa-
tive explanations. Language models must con-
sider various features to predict a token, such
as its part of speech, number, tense, or seman-
tics. Existing explanation methods conflate ev-
idence for all these features into a single expla-
nation, which is less interpretable for human
understanding.

To disentangle the different decisions in lan-
guage modeling, we focus on explaining lan-
guage models contrastively: we look for
salient input tokens that explain why the model
predicted one token instead of another. We
demonstrate that contrastive explanations are
quantifiably better than non-contrastive expla-
nations in verifying major grammatical phe-
nomena, and that they significantly improve
contrastive model simulatability for human ob-
servers. We also identify groups of contrastive
decisions where the model uses similar evi-
dence, and we are able to characterize what in-
put tokens models use during various language
generation decisions.1

1 Introduction

Despite their success across a wide swath of natural
language processing (NLP) tasks, neural language
models (LMs) are often used as black boxes: how
they make certain predictions remains obscure (Be-
linkov and Glass, 2019). This is in part due to the
high complexity of the LM task itself, as well as
that of the model architectures used to solve it.

We argue that this is also due to the fact that inter-
pretability methods commonly used in NLP, such

⇤⇤Work done while at Carnegie Mellon University.
1Code and demo: https://github.com/kayoyin/interpret-lm.

Input: Can you stop the dog from
Output: barking

1. Why did the model predict “barking”?
Can you stop the dog from

2. Why did the model predict “barking” instead of “crying”?
Can you stop the dog from

3. Why did the model predict “barking” instead of “walking”?
Can you stop the dog from

Table 1: Explanations for the GPT-2 prediction given
the input “Can you stop the dog from _____". Input to-
kens that are measured to raise or lower the probability
of “barking” are in red and blue respectively, and those
with little influence are in white. Non-contrastive ex-
planations such as gradient ⇥ input (1) usually attribute
the highest saliency to the token immediately preceding
the prediction. Contrastive explanations (2, 3) give a
more fine-grained and informative explanation on why
the model predicted one token over another.

as gradient-based saliency maps (Li et al., 2016a;
Sundararajan et al., 2017), are not as informative
for LM predictions compared to other tasks like
text classification. For example, to explain why an
LM predicts “barking” given “Can you stop the
dog from ____”, we demonstrate in experiments
that the input token preceding the prediction is of-
ten marked as the most influential token to the pre-
diction (Table 1) by instance attribution methods.
The preceding token is indeed highly important to
determine certain features of the next token, ruling
out words that would obviously violate syntax in
that context (e.g. non “-ing” verbs in the given
example). However, this does not explain why the
model made other more subtle decisions, such as
why it predicts “barking” instead of “crying” or

“walking”, which are all plausible choices if we only
look at the preceding token. In general, language
modeling has a large output space and a high com-
plexity compared to other NLP tasks; at each time
step, the LM chooses one word out of all vocabu-
lary items, and several linguistic distinctions come
into play for each language model decision.

184

Counterfactual generation Contrastive explanations

Yin, K., & Neubig, G. (2022). Interpreting Language Models with 
Contrastive Explanations. Proceedings of the 2022 Conference on 
Empirical Methods in Natural Language Processing.
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Abstract
Interpretability is the study of explaining models in understandable
terms to humans. At present, interpretability is divided into two
paradigms: the intrinsic paradigm, which believes that only models
designed to be explained can be explained, and the post-hoc para-
digm, which believes that black-box models can be explained. At the
core of this debate is how each paradigm ensures its explanations
are faithful, i.e., true to the model’s behavior. This is important, as
false but convincing explanations lead to unsupported con!dence
in arti!cial intelligence (AI), which can be dangerous. This article’s
perspective is that we should think about new paradigms while
staying vigilant regarding faithfulness. First, by examining the his-
tory of paradigms in science, we see that paradigms are constantly
evolving. Then, by examining the current paradigms, we can un-
derstand their underlying beliefs, the value they bring, and their
limitations. Finally, this article presents 3 emerging paradigms for
interpretability. The !rst paradigm designs models such that faith-
fulness can be easily measured. Another optimizes models such
that explanations become faithful. The last paradigm proposes to
develop models that produce both a prediction and an explanation.

CCS Concepts
• Computing methodologies→ Neural networks; Natural lan-
guage processing; • Human-centered computing→ Interaction
paradigms; • Social and professional topics → Governmental
regulations.
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1 Introduction
There was a time in physics, in the late 17th century, when Isaac
Newton insisted that light is a particle and Christiaan Huygens
insisted that light is a wave. These ideas were seemingly irreconcil-
able at the time. Of course, now we have a much better theory, and
we understand that light can be seen as both a wave and a particle.1

In 1874, Georg Cantor proposed set theory and showed there ex-
ists at least two kinds of in!nity. This divided the mathematical !eld.
The Intuitionists, who named Cantor’s theory nonsense, thought
that math was a pure creation of the mind and that these in!nities
weren’t real. Henri Poincaré said: “Later generations will regard
Mengenlehre (set theory) as a disease from which one has recov-
ered” [22]. Leopold Kronecker called Cantor a “scienti!c charlatan”
and “corruptor of the youth” [15].

The other group, the Formalists, thought that by using Cantor’s
set theory, all math could be proven from this fundamental founda-
tion. David Hilbert said: “No one shall expel us from the paradise
that Candor has created” and “In opposition to the foolish Ignora-
mus (we will not know; i.e., intuitionists), our slogan shall be: We
must know – we will know” [38].

Today, we know in!nities are important concepts; thus, the In-
tuitionists were wrong. However, Kurt Gödel showed that the For-
malists were also wrong. Unfortunately, there exist true statements
which can never be proven [21, Gödel’s incompleteness theorem].

These are just two examples in science and mathematics where
there have been strong debates and beliefs due to con"icting paradigms.
Science historian Thomas Kuhn de!nes a scienti!c paradigm as:
“universally recognized scienti!c achievements that, for a time, pro-
vide model problems and solutions to a community of practitioners”
[29].

1Known as the wave-particle duality concept.
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How to provide and ensure faithful explanations 
for complex general-purpose neural NLP models?

‣ By developing new paradigms that design models to be 
explained without employing architectural constraints. 

‣ By focusing on developing accurate faithfulness metrics. 

‣ By focusing on importance measures that have had a 
notoriously troubling history regarding faithfulness. 

‣ By taking advantage of properties specific to natural language 
and NLP models.

Research hypothesis

Research question

This question can be answered:



Model is designed such that 
measuring faithfulness is easy.

Model is designed such that 
it can explain itself.

Faithfulness 
measurable models Self-explanations

ICML 2024 
Spotlight

ACL 2024 
Findings

Potential paradigms
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Faithfulness 
measurable models



Positive 
sentiment

model

80% faithful

regular inputexplanation

Faithfulness measurable model
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The movie was great . I really liked it . The movie was great . I really liked it .
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Samek, W., et al. Evaluating the Visualization of What a Deep Neural 
Network Has Learned. IEEE 2017.

erasure-metric

If a token is truly important, 
then if the token is removed, 
the model’s prediction should 

change significantly.

Hooker, S., Erhan, D., Kindermans, P.-J. J., & Kim, B. A benchmark for 
interpretability methods in deep neural networks. NeurIPS 2019.
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Evaluating the Faithfulness of Importance Measures in NLP by
Recursively Masking Allegedly Important Tokens and Retraining
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Abstract
To explain NLP models a popular approach is
to use importance measures, such as attention,
which inform input tokens are important for
making a prediction. However, an open ques-
tion is how well these explanations accurately
reflect a model’s logic, a property called faith-
fulness.

To answer this question, we propose Recur-
sive ROAR, a new faithfulness metric. This
works by recursively masking allegedly impor-
tant tokens and then retraining the model. The
principle is that this should result in worse
model performance compared to masking ran-
dom tokens. The result is a performance
curve given a masking-ratio. Furthermore,
we propose a summarizing metric using rel-
ative area-between-curves (RACU), which al-
lows for easy comparison across papers, mod-
els, and tasks.

We evaluate 4 different importance measures
on 8 different datasets, using both LSTM-
attention models and RoBERTa models. We
find that the faithfulness of importance mea-
sures is both model-dependent and task-
dependent. This conclusion contradicts previ-
ous evaluations in both computer vision and
faithfulness of attention literature.

1 Introduction

The ability to explain neural networks benefits both
accountability and ethics when deploying models
(Doshi-Velez et al., 2017) and helps develop a scien-
tific understanding of what models do (Doshi-Velez
and Kim, 2017). Particularly, in NLP, attention
(Bahdanau et al., 2015) is often used as an explana-
tion to provide insight into the logical process of a
model (Belinkov and Glass, 2019).

Attention, among other methods such as gra-
dient (Baehrens et al., 2010; Li et al., 2016) and
integrated gradient (Sundararajan et al., 2017; Mu-
drakarta et al., 2018), explain which input tokens

*Equal contribution.

are relevant for a given prediction. This type of
explanation is called an importance measure.

A major challenge in the field of interpretabil-
ity is ensuring that an explanation is faithful: “a
faithful interpretation is one that accurately rep-
resents the reasoning process behind the model’s
prediction” (Jacovi and Goldberg, 2020). Unfor-
tunately, importance measures that are claimed to
have strong theoretical foundations and are widely
used in practice (Bhatt et al., 2019) often later turn
out to be questionable (Hooker et al., 2019; Kinder-
mans et al., 2019; Adebayo et al., 2018; Jain and
Wallace, 2019; Wiegreffe and Pinter, 2019).

Accurately measuring if an explanation is faith-
ful is therefore paramount. Such faithfulness met-
rics are difficult to develop as the models are too
complex to know what the correct explanation is.
Doshi-Velez and Kim (2017) says a faithfulness
metric should use “some formal definition of inter-
pretability as a proxy for explanation quality.”

In this work, we use the definition of faithfulness
by Samek et al. (2017) and Hooker et al. (2019): if
information (input tokens) is truly important, then
removing it should result in a worse model per-
formance compared to removing random informa-
tion (tokens). We build upon the ROAR metric by
Hooker et al. (2019), which adds that it is necessary
to retrain the model after information is removed, to
avoid out-of-distribution issues. Finally, the model
performance is compared with removing random
information.

A limitation of ROAR is that it is theoretically
impossible to measure the faithfulness of an im-
portance measure when dataset redundancies exist.
For example, if two tokens are equally relevant but
only one of them is identified as important, ROAR
fails to remove the second token.

We propose Recursive ROAR which solves this
limitation. In addition to the Recursive ROAR met-
ric, we introduce a summarizing metric (RACU)
which aggregates the results into a scalar metric.

1731
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Model and task-dependent faithfulness
LSTM RoBERTa

bAbI-1 59.1% 48.2%
bAbI-2 34.6% 42.0%

bAbI-3 25.9% -27.9%

Anemia 4.9% 12.5%
Diabetes 11.4% 26.1%

SST 37.8% 32.9%
SNLI -13.9% 56.7%

IMDB 32.5% 35.1%

Absolute Integrated Gradient Same conclusion in: Bastings, J., et al. “Will You Find These 
Shortcuts?” A Protocol for Evaluating the Faithfulness of Input 
Salience Methods for Text Classification. EMNLP 2022 34
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Limitations

• Computationally expensive: 
• Retrain the model 10 times 
• Importance measure on training dataset 
• For each: explanation, model, and dataset 
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Limitations

• Computationally expensive: 
• Retrain the model 10 times 
• Importance measure on training dataset 
• For each: explanation, model, and dataset 

• Does not measure on the deployed model 
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Limitations

• Computationally expensive: 
• Retrain the model 10 times 
• Importance measure on training dataset 
• For each: explanation, model, and dataset 

• Does not measure on the deployed model 
• Leaks the classification target

All because of retraining

37



What if we had a model that supported 
masking from the beginning?

38
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Faithfulness Measurable Masked Language Models

Andreas Madsen 1 2 Siva Reddy 1 3 4 Sarath Chandar 1 2 5

Abstract

A common approach to explaining NLP mod-
els is to use importance measures that express
which tokens are important for a prediction. Un-
fortunately, such explanations are often wrong
despite being persuasive. Therefore, it is essen-
tial to measure their faithfulness. One such met-
ric is if tokens are truly important, then mask-
ing them should result in worse model perfor-
mance. However, token masking introduces out-
of-distribution issues, and existing solutions that
address this are computationally expensive and
employ proxy models. Furthermore, other met-
rics are very limited in scope. This work proposes
an inherently faithfulness measurable model that
addresses these challenges. This is achieved us-
ing a novel fine-tuning method that incorporates
masking, such that masking tokens become in-
distribution by design. This differs from existing
approaches, which are completely model-agnostic
but are inapplicable in practice. We demonstrate
the generality of our approach by applying it to
16 different datasets and validate it using statisti-
cal in-distribution tests. The faithfulness is then
measured with 9 different importance measures.
Because masking is in-distribution, importance
measures that themselves use masking become
consistently more faithful. Additionally, because
the model makes faithfulness cheap to measure,
we can optimize explanations towards maximal
faithfulness; thus, our model becomes indirectly
inherently explainable.

1Mila, Montreal, Canada 2Computer Engineering and
Software Engineering Department, Polytechnique Mon-
treal, Montreal, Canada 3Computer Science and Linguistics,
McGill University, Montreal, Canada 4Facebook CIFAR
AI Chair 5Canada CIFAR AI Chair. Correspondence
to: Andreas Madsen <andreas.madsen@mila.quebec>,
Siva Reddy <siva.reddy@mila.quebec>, Sarath Chandar
<sarath.chandar@mila.quebec>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
As machine learning models are increasingly being de-
ployed, the demand for interpretability to ensure safe op-
eration increases (Doshi-Velez & Kim, 2017). In NLP, im-
portance measures such as attention or integrated gradient
are a popular way of explaining which input tokens are im-
portant for making a prediction (Bhatt et al., 2019). These
explanations are not only used directly to explain models
but are also used in other explanations such as contrastive
(Yin & Neubig, 2022), counterfactuals (Ross et al., 2021),
and adversarial explanations (Ebrahimi et al., 2018).

Unfortunately, importance measures (IMs) are often found
to provide false explanations despite being persuasive (Jain
& Wallace, 2019; Hooker et al., 2019). For example, a given
IMs might not be better at revealing important tokens than
pointing at random tokens (Madsen et al., 2022a). This
presents a risk, as false but persuasive explanations can lead
to unsupported confidence in a model. Therefore, it’s im-
portant to measure faithfulness. Jacovi & Goldberg (2020)
defines faithfulness as: “how accurately it (explanation) re-
flects the true reasoning process of the model”. In this work,
we propose a methodology that enables existing models to
support measuring faithfulness by design.

Measuring faithfulness is challenging, as there is generally
no known ground-truth for the correct explanation. Instead,
faithfulness metrics have to use proxies. One such proxy
is the erasure-metric by Samek et al. (2017): if tokens are
truly important, then masking them should result in worse
model performance compared to masking random tokens.

However, masking tokens can create out-of-distribution is-
sues. This can be solved by retraining the model after al-
legedly important tokens have been masked (Hooker et al.,
2019; Madsen et al., 2022a). Unfortunately, this is computa-
tionally expensive, leaks the gold label, and the measured
model is now different from the model of interest.

In general, the cost of proxies has been some combination
of incorrect assumptions, expensive computations, or using
a proxy-model (Jain & Wallace, 2019; Bastings et al., 2022;
Madsen et al., 2022a). Based on previous work, we propose
the following desirable, which to the best of our knowledge,
no previous faithfulness metric for importance measures
satisfies in all aspects, but we satisfy:
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Masked Language Models

• Pre-trained with 12% masking (RoBERTa) 

• Catastrophic forgetting when fine-tuning

40



Masked fine-tuning

1. Sample a masking ratio between 0% and 100%. 
2. Mask random ratio% tokens in an observation.

Uniform masking:

In half of the mini-batch. 
For each training observation:

no
masking

uniform
masking

The move was great0%

Is this acting0%

[M] new [M] of comedy40%

[M] [M] they [M] had60%

===

L
o
ss

Epoch

41

ℒ (X1:B, y1:B) = ℒ̃ (X1: B
2
, y1: B

2 )
ℒ̃ (mask (X B

2 :B), y B
2 :B)+



0% masked performance

No performance issues

42

• Default hyperparameters. 
• 95% confidence interval 

of the mean, 5 seeds.



0% masked performance

No performance issues

• Default hyperparameters. 
• 95% confidence interval 

of the mean, 5 seeds.
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0% masked performance

No performance issues

• Default hyperparameters. 
• 95% confidence interval 

of the mean, 5 seeds.
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Type Dataset

NLI

RTE
SNLI
MNLI
CB

Parahrase MRPC
QQP

Sentiment SST2
IMDB

Diagnosis Anemia
Diabetese

Acceptability CoLA

QA

BoolQ
bAbI-1
bAbI-2
bAbI-3

0% masked performance

No performance issues
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0% masked performance 100% masked performance

No performance issues
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✅ ✅

100%0%
masking-ratio

?



In-distribution testing

• Should assume little of the model’s internals. 
For example, do not assume internally 
normally distributed. 

• Should only consider the model, not the 
input distribution. 

• Should provide non-ambiguous metrics.

48



In-distribution testing

• Should assume little of the model’s internals. 
For example, do not assume internally 
normally distributed. 

• Should only consider the model, not the 
input distribution. 

• Should provide non-ambiguous metrics.

49

• Use MaSF [1], a non-parametric statistical 
global in-distribution test. 

• Originally made for small scale computer 
vision, which we adapt to large scale NLP. 

[1] Matan, H., Frostig, T., Heller, R., & Soudry, D.  A Statistical Framework for 
Efficient Out of Distribution Detection in Deep Neural Networks. ICLR 2022



In-distribution testing
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• Because random masking is different 
form targeted masking, 
each explanation need to be tested.



In-distribution testing
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• Because random masking is different 
form targeted masking, 
each explanation need to be tested.

OOD issue

• Often out-of-distribution issues with 
plain fine-tuning. 



In-distribution testing
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• Because random masking is different 
form targeted masking, 
each explanation need to be tested.

• Often out-of-distribution issues with 
plain fine-tuning. 

• No out-of-distribution issues with 
masked fine-tuning.



Positive 
sentiment

model

Positive 
sentiment

model

After: 90%
Before: 94%

After: 40%
Before: 94%

Occlusion-based
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[M] movie was great . I really liked it . The [M] was great . I really liked it .



Positive 
sentiment

model

94%

Gradient-based
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e(xi) =
∂ f(x)c

∂ xi
x

The movie was great . I really liked it .



Importance Measures
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Positive 
sentiment

model

Signed

Absolute The movie was great . I really liked it .

The movie was great . I really liked it .



Faithfulness
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Faithfulness

Occlusion-based
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Comparison
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RoBERTa-Base

Dataset IM FMM R-ROAR

SST2

Grad (L2) 40.4% 26.1%

X  ⊙ grad (abs) 23.5% 18.6%

IG (abs) 45.3% 32.9%

bAbI-2

Grad (L2) 96.3% 57.8%

X  ⊙ grad (abs) 92.0% 48.1%

IG (abs) 98.3% 42.0%
0 20 40 60 80 100

% tokens masked

0%
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Higher faithfulness

56

John went to the office. 
Mary went to the hallway. 
John went to the bathroom.

Where is John?

Dataset IM FMM R-ROAR

SST2

Grad (L2) 40.4% 26.1%

X  ⊙ grad (abs) 23.5% 18.6%

IG (abs) 45.3% 32.9%

bAbI-2

Grad (L2) 96.3% 57.8%

X  ⊙ grad (abs) 92.0% 48.1%

IG (abs) 98.3% 42.0%

RoBERTa-Base



Higher faithfulness
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Dataset IM FMM R-ROAR

SST2

Grad (L2) 40.4% 26.1%

X  ⊙ grad (abs) 23.5% 18.6%

IG (abs) 45.3% 32.9%

bAbI-2

Grad (L2) 96.3% 57.8%

X  ⊙ grad (abs) 92.0% 48.1%

IG (abs) 98.3% 42.0%

RoBERTa-Base

• Produces a more robust model, 
that depends on more relevant 
signals. 

• Faithful explanations then reveals 
objectively important information.

[M] went [M] [M] [M]. 
[M] [M] to [M] [M]. 
John [M] to [M] bathroom.



Not model and task-dependent
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• Improvements across all 
datasets. 

• There are now consistently 
good importance measures, 
across all 16 datasets.

Dataset IM FMM R-ROAR

bAbI-1
IG (abs)

93.7% 48.2%
bAbI-2 98.3% 42.0%

bAbI-3 100 % -27.9%

Anemia
IG (abs)

52.1% 12.5%
Diabetes 90.5% 26.1%

SST
IG (abs)

45.3% 32.9%
SNLI 92.3% 56.7%

IMDB 35.4% 35.1%

RoBERTa-Base
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Faithfulness measurable model
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The movie was great . I really liked it . The movie was great . I really liked it .



Optimizing for faithfulness

• Building on existing work which uses a beam-search 
optimizer [1]. 

• Slightly different faithfulness metric. They use 
comprehensiveness – sufficiency, we use Recursive ROAR, 
but same idea. 

• They do not address the OOD issues caused by masking.

60

[1] Zhou, Y., & Shah, J. The Solvability of Interpretability Evaluation 
Metrics. EACL Findings, 2023.



Optimizing for faithfulness

1 1
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The movie was great . I really liked it .

The [M] was great . I really liked it . The movie was [M] . I really liked it .



Optimizing for faithfulness

1 1
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The movie was great . I really liked it .

The [M] was great . I really liked it . The movie was [M] . I really liked it .

1 2 1

1 3 2

2

3 1 2

The [M] was [M] . I really liked it .

The [M] was [M] . I really [M] it .

The movie was [M] . I really [M] it .

The movie was [M] . I [M] [M] it .



Faithfulness
Beam is not always optimal, 
because it’s an approximation.
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Summary

no
masking

uniform
masking

1. Masked fine-tuning 2. In-distribution validation 3. Measure faithfulness
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Faithfulness Measurable Models

Black-box models are more 
general purpose.

Only models designed to be 
explained can be explained.

64

Any model can be explained.

Intrinsic models can have 
high-performance too.
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17

less information more information

low
er

abstraction
higher

abstraction

local explanation

input
features

adversarial
examples

influential
examples

counter-
factuals

natural
language

class explanation

concepts

global explanation

vocabulary

ensemble

linguistic
information

rules

post-hoc

black-box dataset gradient embeddings white-box

intrinsic

model specific

Occlusion
-based § 2.5.2

Gradient
-based § 2.5.1

Attenton
-based § 2.5.3

SEAM § A.1.2 HotFlip § A.1.1

Influence FunctionsH § A.2.1
TracInC § A.2.3 Representer Pointers† § A.2.2 Prototype

Networks

PolyjuiceM,D

§ 2.6.1 MiCEM § 2.6.2

predict-then-
explainM § 2.7.2

explain-then-
predictM § 2.7.1

NIED § A.3.1

Project § A.4.1,
Rotate § A.4.2

SP-LIME § A.5.1

Behavioral
ProbesD § A.6.1

Structural
ProbesD § A.6.2

Structural
ProbesD § A.6.2

Auxiliary
TaskD

SEARM § A.7.1 Compositional Explanations of Neurons† § A.7.2

Table 2.1 Overview of post-hoc interpretability methods, where § indicates the section the
method is discussed. Rows describe how the explanation is communicated, while columns
describe what information is used to produce the explanation. The order of both rows and
columns indicates the level of abstraction and amount of information, respectively. However,
this order is only approximate.
Columns: Black-box : the method only evaluates the model. Dataset: the method has access
to all training and validation observations. Gradient: the gradient of the model is computed.
Embeddings: the method uses the word embedding matrix. White-box: the method knows
everything about the model, such as all weights and all operations. However, the method is not
specific to a particular architecture. Model specific: the method is specific to the architecture.
Note that neural models in NLP are usually di!erentiable and have an embedding matrix.
We therefore do not consider these as architectural constraints.
Superscript: C: Depends on checkpoints during training. D: Depends on supplementary
dataset. H: Depends on second-order derivative. M: Depends on supplementary model. †:
Depends only on dataset and white-box access.
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17

less information more information

low
er

abstraction
higher

abstraction

local explanation

input
features

adversarial
examples

influential
examples

counter-
factuals

natural
language

class explanation

concepts

global explanation

vocabulary

ensemble

linguistic
information

rules

post-hoc

black-box dataset gradient embeddings white-box

intrinsic

model specific

Occlusion
-based § 2.5.2

Gradient
-based § 2.5.1

Attenton
-based § 2.5.3

SEAM § A.1.2 HotFlip § A.1.1

Influence FunctionsH § A.2.1
TracInC § A.2.3 Representer Pointers† § A.2.2 Prototype

Networks

PolyjuiceM,D

§ 2.6.1 MiCEM § 2.6.2

predict-then-
explainM § 2.7.2

explain-then-
predictM § 2.7.1

NIED § A.3.1

Project § A.4.1,
Rotate § A.4.2

SP-LIME § A.5.1

Behavioral
ProbesD § A.6.1

Structural
ProbesD § A.6.2

Structural
ProbesD § A.6.2

Auxiliary
TaskD

SEARM § A.7.1 Compositional Explanations of Neurons† § A.7.2

Table 2.1 Overview of post-hoc interpretability methods, where § indicates the section the
method is discussed. Rows describe how the explanation is communicated, while columns
describe what information is used to produce the explanation. The order of both rows and
columns indicates the level of abstraction and amount of information, respectively. However,
this order is only approximate.
Columns: Black-box : the method only evaluates the model. Dataset: the method has access
to all training and validation observations. Gradient: the gradient of the model is computed.
Embeddings: the method uses the word embedding matrix. White-box: the method knows
everything about the model, such as all weights and all operations. However, the method is not
specific to a particular architecture. Model specific: the method is specific to the architecture.
Note that neural models in NLP are usually di!erentiable and have an embedding matrix.
We therefore do not consider these as architectural constraints.
Superscript: C: Depends on checkpoints during training. D: Depends on supplementary
dataset. H: Depends on second-order derivative. M: Depends on supplementary model. †:
Depends only on dataset and white-box access.
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Are self-explanations from Large Language Models faithful?
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4 Canada CIFAR AI Chair 5 Facebook CIFAR AI Chair
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Abstract

Instruction-tuned Large Language Models
(LLMs) excel at many tasks and will
even explain their reasoning, so-called self-
explanations. However, convincing and wrong
self-explanations can lead to unsupported confi-
dence in LLMs, thus increasing risk. Therefore,
it’s important to measure if self-explanations
truly reflect the model’s behavior. Such a mea-
sure is called interpretability-faithfulness and is
challenging to perform since the ground truth
is inaccessible, and many LLMs only have an
inference API. To address this, we propose
employing self-consistency checks to measure
faithfulness. For example, if an LLM says a
set of words is important for making a predic-
tion, then it should not be able to make its
prediction without these words. While self-
consistency checks are a common approach to
faithfulness, they have not previously been suc-
cessfully applied to LLM self-explanations for
counterfactual, feature attribution, and redac-
tion explanations. Our results demonstrate that
faithfulness is explanation, model, and task-
dependent, showing self-explanations should
not be trusted in general. For example, with sen-
timent classification, counterfactuals are more
faithful for Llama2, feature attribution for Mis-
tral, and redaction for Falcon 40B.

1 Introduction

Instruction-tuned large language models (LLMs),
such as Llama2 (Touvron et al., 2023), Falcon
(Penedo et al., 2023), Mistral (Jiang et al., 2023), or
GPT4 (OpenAI, 2023), are increasingly becoming
mainstream among the general population, due to
their capabilities and availability.

Instruction-tuned LLMs can even provide very
convincing explanations for their utterances and
will often do so unprompted. Because LLMs pro-
duce these explanations themselves and they pro-
vide justification for their own behavior, we term
them self-explanations. Importantly, one may also
judge the ethicality of models not just based on

Session 1 (prediction and explanation)

Is the following candidate a good fit for a
Senior SWE position? Answer only yes/no.
Education:
2016-2020: Bachelor in Biology at University Y
{resume continues ...}

User input

No
Model response

Make a minimal edit to the resume, 5 words
or less, such that you would answer yes.

Education:
2016-2020: BSc in CS at University Y
{counterfactual resume continues ...}

Counterfactual explanation

Session 2 (self-consistency)

Is the following candidate a good fit for a
Senior SWE position? Answer only yes/no.
{insert counterfactual resume}

Yes

Figure 1: Example of an LLM providing a counterfac-
tual self-explanation and using a self-consistency check
to evaluate if it is faithful. – In this conversation with
Llama2 (70B), we learn from the counterfactual edit that
a “Bachelor in Biology” education was the reason to say
“No”, assuming the self-explanation is faithful. Because
we asked for an edit to get a “Yes” response, and the re-
sponse is “Yes”, the counterfactual is faithful. Note the
self-explanation generation and self-consistency check
must happen in two separate sessions.

their predictions but also on their self-explanations.
However, it’s also well established that LLMs hal-
lucinate (Bang et al., 2023; Yao et al., 2023). This
creates a potential danger, as convincing but wrong
self-explanations create unsupported confidence
in the model’s capabilities (Agarwal et al., 2024;
Chen et al., 2023).
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Self-explanations

LLM

Input

Prediction Explanation
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Self-explanations
Cons

• Explanation is also produced by a 
black-box. 

• Hard to measure faithfulness of 
free-formed explanations. LLM

Input

Prediction Explanation
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Self-explanations
Cons

• Explanation is also produced by a 
black-box. 

• Hard to measure faithfulness of 
free-formed explanations.

Pros 

•The explanation could have 
greater access to the prediction-
model behavior.

LLM

Input

Prediction Explanation
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Problem
Hard to measure faithfulness 
of free-formed explanations.
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Problem
Hard to measure faithfulness 
of free-formed explanations.

Look at a subset of self-explanations 
which we know how to validate.

Solution
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Sentiment counterfactuals
Session 1 (prediction and explanation)
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Positive.

What is the sentiment of the following para- 
graph? Answer only "positive", "negative", 
"neutral", or “unknown": 

Paragraph: I liked this the movie, it was great.



Sentiment counterfactuals
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Positive.

What is the sentiment of the following para- 
graph? Answer only "positive", "negative", 
"neutral", or “unknown": 

Paragraph: I liked this the movie, it was great.

Edit the paragraph such that the sentiment is 
“negative". Make as few edits as possible.

I disliked this the movie, it was awful.



Sentiment counterfactuals
Session 1 (prediction and explanation)

76

Positive.

What is the sentiment of the following para- 
graph? Answer only "positive", "negative", 
"neutral", or “unknown": 

Paragraph: I liked this the movie, it was great.

Edit the paragraph such that the sentiment is 
“negative". Make as few edits as possible.

I disliked this the movie, it was awful.

Com
pare



Sentiment counterfactuals
Session 1 (prediction and explanation)

Negative

What is the sentiment of the following para- 
graph? Answer only "positive", "negative", 
"neutral", or “unknown": 

Paragraph: I disliked this the movie, it was 
awful.

Session 2 (Self-consistency)
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Cop
yPositive.

What is the sentiment of the following para- 
graph? Answer only "positive", "negative", 
"neutral", or “unknown": 

Paragraph: I liked this the movie, it was great.

Edit the paragraph such that the sentiment is 
“negative". Make as few edits as possible.

I disliked this the movie, it was awful.



Sentiment counterfactuals

Positive.

What is the sentiment of the following para- 
graph? Answer only "positive", "negative", 
"neutral", or “unknown": 

Paragraph: I liked this the movie, it was great.

Edit the paragraph such that the sentiment is 
“negative". Make as few edits as possible.

I disliked this the movie, it was awful.

Session 1 (prediction and explanation)

Negative

What is the sentiment of the following para- 
graph? Answer only "positive", "negative", 
"neutral", or “unknown": 

Paragraph: I disliked this the movie, it was 
awful.

Session 2 (Self-consistency)

Self-consistent

Faithful
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Sentiment feature attribution

What is the sentiment of the following para- 
graph? The paragraph can contain redacted 
words marked with [REDACTED]. Answer only 
"positive", "negative", "neutral", or “unknown": 

Paragraph: I liked this the movie, it was great.

Session 1 (prediction and explanation)

Unknown

What is the sentiment of the following para- 
graph? The paragraph can contain redacted 
words marked with [REDACTED]. Answer only 
"positive", "negative", "neutral", or “unknown": 

Paragraph: I [REDACTED] this the movie, it 
was [REDACTED].

Session 2 (Self-consistency)

FaithfulSelf-consistent

List the most important words for determining 
the sentiment, such that without these words 
the sentiment cannot be determined.

Important words: "liked," “great".

No
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Sentiment redaction

What is the sentiment of the following para- 
graph? The paragraph can contain redacted 
words marked with [REDACTED]. Answer only 
"positive", "negative", "neutral", or “unknown": 

Paragraph: I liked this the movie, it was great.

Session 1 (prediction and explanation)

Unknown

What is the sentiment of the following para- 
graph? The paragraph can contain redacted 
words marked with [REDACTED]. Answer only 
"positive", "negative", "neutral", or “unknown": 

Paragraph: I [REDACTED] this the movie, it 
was [REDACTED].

Session 2 (Self-consistency)

FaithfulSelf-consistent
Redact the most important words for 
determining the sentiment, by replacing 
important words with [REDACTED], such that 
without these words the sentiment can not be 
determined.

Paragraph: I [REDACTED] this the movie, it 
was [REDACTED].

No

Direct redaction
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The movie was great.
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Self-consistency checks
The movie was great.

Classification prompt.
Session 1

Positive
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Self-consistency checks

Counterfactual 
explanation prompt.

The movie was awful.

Feature attribution 
explanation prompt.

Redaction 
explanation prompt.

Important words: “great”. The movie was [REDACTED].

The movie was great.

Classification prompt.
Session 1

Positive
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Self-consistency checks

Counterfactual 
explanation prompt.

The movie was awful.

Feature attribution 
explanation prompt.

Redaction 
explanation prompt.

Important words: “great”. The movie was [REDACTED].

Classification prompt.

Negative Unknown

Session 2

The movie was great.

Classification prompt.
Session 1

Positive
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Self-consistency checks

Counterfactual 
explanation prompt.

The movie was awful.

Feature attribution 
explanation prompt.

Redaction 
explanation prompt.

Important words: “great”. The movie was [REDACTED].

Classification prompt.

Negative Unknown

Classification prompt.

Session 3

Session 2

Session 1
The movie was great.

Positive

82



Classification
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Classification

Because the goal is not a high accuracy LLM classifier, 
we just discard misclassified observations.
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Faithfulness

• Model-dependent. 

85



Faithfulness

• Model-dependent. 

• Task-dependent. 
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Faithfulness

• Model-dependent. 

• Task-dependent. 

• Explanation-dependent. 
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Faithfulness

• Model-dependent. 

• Task-dependent. 

• Explanation-dependent. 

In general, we can’t trust 
LLMs’ self-explanations.
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Robustness
What about prompt variations?



Robustness

If the model was generally faithful 
but one prompt variation was not, 

that would be problematic.
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Robustness

If the model was generally faithful 
but one prompt variation was not, 

that would be problematic.
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How can we make LLMs’ 
self-explanations faithful?
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Humans don’t know how 
the model behaves.

Human preference.
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Humans don’t know how 
the model behaves.
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No, the education does not match 
the position.

Is the following candidate a good fit for a 
Senior SWE position? Answer only yes/no. 

Education: 
2016-2020: Bachelor in Biology at University Y 
 
Extra: 
Member of Women’s Chess Club

Case 1 Case 2

Is the following candidate a good fit for a 
Senior SWE position? Answer only yes/no. 

Education: 
2016-2020: Bachelor in Biology at University Y 
 
Extra: 
Member of Chess Club

Yes.

Fairwashing

[1] Aïvodji, U., Arai, H., Fortineau, O., Gambs, S., Hara, S., & Tapp, A. 
Fairwashing: The risk of rationalization. ICML 2019

[2] Aïvodji, U., Arai, H., Gambs, S., & Hara, S. Characterizing the risk of 
fairwashing, NeurIPS 2021. 96



No, the education does not match 
the position.

Is the following candidate a good fit for a 
Senior SWE position? Answer only yes/no. 

Education: 
2016-2020: Bachelor in Biology at University Y 
 
Extra: 
Member of Women’s Chess Club

Case 1 Case 2

Is the following candidate a good fit for a 
Senior SWE position? Answer only yes/no. 

Education: 
2016-2020: Bachelor in Biology at University Y 
 
Extra: 
Member of Women’s Chess Club

No, because it’s a women.

Fairwashing

“Preferred”

[1] Aïvodji, U., Arai, H., Fortineau, O., Gambs, S., Hara, S., & Tapp, A. 
Fairwashing: The risk of rationalization. ICML 2019

[2] Aïvodji, U., Arai, H., Gambs, S., & Hara, S. Characterizing the risk of 
fairwashing, NeurIPS 2021. 97
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Self-explanations

Black-box models are more 
general purpose.

Only models designed to be 
explained can be explained.

99

Any model can be explained.

Intrinsic models can have 
high-performance too.



Future Work
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Faithfulness 
Measurable Models

Applies to 
CLMs

Applies to 
other explanations

Better 
Optimizations

Self-explanations

Optimize also for 
faithfulness

More faithfulness 
metrics

Self-modeling 
capabilities
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How to provide and ensure faithful explanations 
for complex general-purpose neural NLP models?

‣ By developing new paradigms that design models to be 
explained without employing architectural constraints. 

‣ By focusing on developing accurate faithfulness metrics. 

‣ By focusing on importance measures that have had a 
notoriously troubling history regarding faithfulness. 

‣ By taking advantage of properties specific to natural language 
and NLP models.

Research hypothesis

Research question

This question can be answered:
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Evaluating the Faithfulness of Importance Measures in NLP by
Recursively Masking Allegedly Important Tokens and Retraining

Andreas Madsen1,2 Nicholas Meade1,3,* Vaibhav Adlakha1,3,* Siva Reddy1,3,4

1 Mila – Quebec AI Institute 2 Polytechnique Montréal
3 McGill University 4 Facebook CIFAR AI Chair
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Abstract
To explain NLP models a popular approach is
to use importance measures, such as attention,
which inform input tokens are important for
making a prediction. However, an open ques-
tion is how well these explanations accurately
reflect a model’s logic, a property called faith-
fulness.

To answer this question, we propose Recur-
sive ROAR, a new faithfulness metric. This
works by recursively masking allegedly impor-
tant tokens and then retraining the model. The
principle is that this should result in worse
model performance compared to masking ran-
dom tokens. The result is a performance
curve given a masking-ratio. Furthermore,
we propose a summarizing metric using rel-
ative area-between-curves (RACU), which al-
lows for easy comparison across papers, mod-
els, and tasks.

We evaluate 4 different importance measures
on 8 different datasets, using both LSTM-
attention models and RoBERTa models. We
find that the faithfulness of importance mea-
sures is both model-dependent and task-
dependent. This conclusion contradicts previ-
ous evaluations in both computer vision and
faithfulness of attention literature.

1 Introduction

The ability to explain neural networks benefits both
accountability and ethics when deploying models
(Doshi-Velez et al., 2017) and helps develop a scien-
tific understanding of what models do (Doshi-Velez
and Kim, 2017). Particularly, in NLP, attention
(Bahdanau et al., 2015) is often used as an explana-
tion to provide insight into the logical process of a
model (Belinkov and Glass, 2019).

Attention, among other methods such as gra-
dient (Baehrens et al., 2010; Li et al., 2016) and
integrated gradient (Sundararajan et al., 2017; Mu-
drakarta et al., 2018), explain which input tokens

*Equal contribution.

are relevant for a given prediction. This type of
explanation is called an importance measure.

A major challenge in the field of interpretabil-
ity is ensuring that an explanation is faithful: “a
faithful interpretation is one that accurately rep-
resents the reasoning process behind the model’s
prediction” (Jacovi and Goldberg, 2020). Unfor-
tunately, importance measures that are claimed to
have strong theoretical foundations and are widely
used in practice (Bhatt et al., 2019) often later turn
out to be questionable (Hooker et al., 2019; Kinder-
mans et al., 2019; Adebayo et al., 2018; Jain and
Wallace, 2019; Wiegreffe and Pinter, 2019).

Accurately measuring if an explanation is faith-
ful is therefore paramount. Such faithfulness met-
rics are difficult to develop as the models are too
complex to know what the correct explanation is.
Doshi-Velez and Kim (2017) says a faithfulness
metric should use “some formal definition of inter-
pretability as a proxy for explanation quality.”

In this work, we use the definition of faithfulness
by Samek et al. (2017) and Hooker et al. (2019): if
information (input tokens) is truly important, then
removing it should result in a worse model per-
formance compared to removing random informa-
tion (tokens). We build upon the ROAR metric by
Hooker et al. (2019), which adds that it is necessary
to retrain the model after information is removed, to
avoid out-of-distribution issues. Finally, the model
performance is compared with removing random
information.

A limitation of ROAR is that it is theoretically
impossible to measure the faithfulness of an im-
portance measure when dataset redundancies exist.
For example, if two tokens are equally relevant but
only one of them is identified as important, ROAR
fails to remove the second token.

We propose Recursive ROAR which solves this
limitation. In addition to the Recursive ROAR met-
ric, we introduce a summarizing metric (RACU)
which aggregates the results into a scalar metric.

1731

Recursive ROAR 
EMNLP, Findings 
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Are self-explanations from Large Language Models faithful?

Andreas Madsen1,2 Sarath Chandar1,2,4 Siva Reddy1,3,5

1 Mila – Quebec AI Institute 2 Polytechnique Montréal 3 McGill University
4 Canada CIFAR AI Chair 5 Facebook CIFAR AI Chair

{firstname.lastname}@mila.quebec

Abstract

Instruction-tuned Large Language Models
(LLMs) excel at many tasks and will
even explain their reasoning, so-called self-
explanations. However, convincing and wrong
self-explanations can lead to unsupported confi-
dence in LLMs, thus increasing risk. Therefore,
it’s important to measure if self-explanations
truly reflect the model’s behavior. Such a mea-
sure is called interpretability-faithfulness and is
challenging to perform since the ground truth
is inaccessible, and many LLMs only have an
inference API. To address this, we propose
employing self-consistency checks to measure
faithfulness. For example, if an LLM says a
set of words is important for making a predic-
tion, then it should not be able to make its
prediction without these words. While self-
consistency checks are a common approach to
faithfulness, they have not previously been suc-
cessfully applied to LLM self-explanations for
counterfactual, feature attribution, and redac-
tion explanations. Our results demonstrate that
faithfulness is explanation, model, and task-
dependent, showing self-explanations should
not be trusted in general. For example, with sen-
timent classification, counterfactuals are more
faithful for Llama2, feature attribution for Mis-
tral, and redaction for Falcon 40B.

1 Introduction

Instruction-tuned large language models (LLMs),
such as Llama2 (Touvron et al., 2023), Falcon
(Penedo et al., 2023), Mistral (Jiang et al., 2023), or
GPT4 (OpenAI, 2023), are increasingly becoming
mainstream among the general population, due to
their capabilities and availability.

Instruction-tuned LLMs can even provide very
convincing explanations for their utterances and
will often do so unprompted. Because LLMs pro-
duce these explanations themselves and they pro-
vide justification for their own behavior, we term
them self-explanations. Importantly, one may also
judge the ethicality of models not just based on

Session 1 (prediction and explanation)

Is the following candidate a good fit for a
Senior SWE position? Answer only yes/no.
Education:
2016-2020: Bachelor in Biology at University Y
{resume continues ...}

User input

No
Model response

Make a minimal edit to the resume, 5 words
or less, such that you would answer yes.

Education:
2016-2020: BSc in CS at University Y
{counterfactual resume continues ...}

Counterfactual explanation

Session 2 (self-consistency)

Is the following candidate a good fit for a
Senior SWE position? Answer only yes/no.
{insert counterfactual resume}

Yes

Figure 1: Example of an LLM providing a counterfac-
tual self-explanation and using a self-consistency check
to evaluate if it is faithful. – In this conversation with
Llama2 (70B), we learn from the counterfactual edit that
a “Bachelor in Biology” education was the reason to say
“No”, assuming the self-explanation is faithful. Because
we asked for an edit to get a “Yes” response, and the re-
sponse is “Yes”, the counterfactual is faithful. Note the
self-explanation generation and self-consistency check
must happen in two separate sessions.

their predictions but also on their self-explanations.
However, it’s also well established that LLMs hal-
lucinate (Bang et al., 2023; Yao et al., 2023). This
creates a potential danger, as convincing but wrong
self-explanations create unsupported confidence
in the model’s capabilities (Agarwal et al., 2024;
Chen et al., 2023).
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Same conclusion in: [1] Bastings, J., et al. “Will You Find These 
Shortcuts?” A Protocol for Evaluating the Faithfulness of Input 
Salience Methods for Text Classification. EMNLP 2022

[2] Lanham, T., et al. Measuring Faithfulness in Chain-of-Thought 
Reasoning. Pre-print 2023.

• The faithfulness of post-hoc and attention 
is model and task-dependent.  

• Shown on importance measures and self-
explanations. Simultaneously works [1,2] 
with same conclusion.
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Abstract
To explain NLP models a popular approach is
to use importance measures, such as attention,
which inform input tokens are important for
making a prediction. However, an open ques-
tion is how well these explanations accurately
reflect a model’s logic, a property called faith-
fulness.

To answer this question, we propose Recur-
sive ROAR, a new faithfulness metric. This
works by recursively masking allegedly impor-
tant tokens and then retraining the model. The
principle is that this should result in worse
model performance compared to masking ran-
dom tokens. The result is a performance
curve given a masking-ratio. Furthermore,
we propose a summarizing metric using rel-
ative area-between-curves (RACU), which al-
lows for easy comparison across papers, mod-
els, and tasks.

We evaluate 4 different importance measures
on 8 different datasets, using both LSTM-
attention models and RoBERTa models. We
find that the faithfulness of importance mea-
sures is both model-dependent and task-
dependent. This conclusion contradicts previ-
ous evaluations in both computer vision and
faithfulness of attention literature.

1 Introduction

The ability to explain neural networks benefits both
accountability and ethics when deploying models
(Doshi-Velez et al., 2017) and helps develop a scien-
tific understanding of what models do (Doshi-Velez
and Kim, 2017). Particularly, in NLP, attention
(Bahdanau et al., 2015) is often used as an explana-
tion to provide insight into the logical process of a
model (Belinkov and Glass, 2019).

Attention, among other methods such as gra-
dient (Baehrens et al., 2010; Li et al., 2016) and
integrated gradient (Sundararajan et al., 2017; Mu-
drakarta et al., 2018), explain which input tokens

*Equal contribution.

are relevant for a given prediction. This type of
explanation is called an importance measure.

A major challenge in the field of interpretabil-
ity is ensuring that an explanation is faithful: “a
faithful interpretation is one that accurately rep-
resents the reasoning process behind the model’s
prediction” (Jacovi and Goldberg, 2020). Unfor-
tunately, importance measures that are claimed to
have strong theoretical foundations and are widely
used in practice (Bhatt et al., 2019) often later turn
out to be questionable (Hooker et al., 2019; Kinder-
mans et al., 2019; Adebayo et al., 2018; Jain and
Wallace, 2019; Wiegreffe and Pinter, 2019).

Accurately measuring if an explanation is faith-
ful is therefore paramount. Such faithfulness met-
rics are difficult to develop as the models are too
complex to know what the correct explanation is.
Doshi-Velez and Kim (2017) says a faithfulness
metric should use “some formal definition of inter-
pretability as a proxy for explanation quality.”

In this work, we use the definition of faithfulness
by Samek et al. (2017) and Hooker et al. (2019): if
information (input tokens) is truly important, then
removing it should result in a worse model per-
formance compared to removing random informa-
tion (tokens). We build upon the ROAR metric by
Hooker et al. (2019), which adds that it is necessary
to retrain the model after information is removed, to
avoid out-of-distribution issues. Finally, the model
performance is compared with removing random
information.

A limitation of ROAR is that it is theoretically
impossible to measure the faithfulness of an im-
portance measure when dataset redundancies exist.
For example, if two tokens are equally relevant but
only one of them is identified as important, ROAR
fails to remove the second token.

We propose Recursive ROAR which solves this
limitation. In addition to the Recursive ROAR met-
ric, we introduce a summarizing metric (RACU)
which aggregates the results into a scalar metric.
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Abstract

Instruction-tuned Large Language Models
(LLMs) excel at many tasks and will
even explain their reasoning, so-called self-
explanations. However, convincing and wrong
self-explanations can lead to unsupported confi-
dence in LLMs, thus increasing risk. Therefore,
it’s important to measure if self-explanations
truly reflect the model’s behavior. Such a mea-
sure is called interpretability-faithfulness and is
challenging to perform since the ground truth
is inaccessible, and many LLMs only have an
inference API. To address this, we propose
employing self-consistency checks to measure
faithfulness. For example, if an LLM says a
set of words is important for making a predic-
tion, then it should not be able to make its
prediction without these words. While self-
consistency checks are a common approach to
faithfulness, they have not previously been suc-
cessfully applied to LLM self-explanations for
counterfactual, feature attribution, and redac-
tion explanations. Our results demonstrate that
faithfulness is explanation, model, and task-
dependent, showing self-explanations should
not be trusted in general. For example, with sen-
timent classification, counterfactuals are more
faithful for Llama2, feature attribution for Mis-
tral, and redaction for Falcon 40B.

1 Introduction

Instruction-tuned large language models (LLMs),
such as Llama2 (Touvron et al., 2023), Falcon
(Penedo et al., 2023), Mistral (Jiang et al., 2023), or
GPT4 (OpenAI, 2023), are increasingly becoming
mainstream among the general population, due to
their capabilities and availability.

Instruction-tuned LLMs can even provide very
convincing explanations for their utterances and
will often do so unprompted. Because LLMs pro-
duce these explanations themselves and they pro-
vide justification for their own behavior, we term
them self-explanations. Importantly, one may also
judge the ethicality of models not just based on

Session 1 (prediction and explanation)

Is the following candidate a good fit for a
Senior SWE position? Answer only yes/no.
Education:
2016-2020: Bachelor in Biology at University Y
{resume continues ...}

User input

No
Model response

Make a minimal edit to the resume, 5 words
or less, such that you would answer yes.

Education:
2016-2020: BSc in CS at University Y
{counterfactual resume continues ...}

Counterfactual explanation

Session 2 (self-consistency)

Is the following candidate a good fit for a
Senior SWE position? Answer only yes/no.
{insert counterfactual resume}

Yes

Figure 1: Example of an LLM providing a counterfac-
tual self-explanation and using a self-consistency check
to evaluate if it is faithful. – In this conversation with
Llama2 (70B), we learn from the counterfactual edit that
a “Bachelor in Biology” education was the reason to say
“No”, assuming the self-explanation is faithful. Because
we asked for an edit to get a “Yes” response, and the re-
sponse is “Yes”, the counterfactual is faithful. Note the
self-explanation generation and self-consistency check
must happen in two separate sessions.

their predictions but also on their self-explanations.
However, it’s also well established that LLMs hal-
lucinate (Bang et al., 2023; Yao et al., 2023). This
creates a potential danger, as convincing but wrong
self-explanations create unsupported confidence
in the model’s capabilities (Agarwal et al., 2024;
Chen et al., 2023).
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Same conclusion in: [1] Bastings, J., et al. “Will You Find These 
Shortcuts?” A Protocol for Evaluating the Faithfulness of Input 
Salience Methods for Text Classification. EMNLP 2022

[2] Lanham, T., et al. Measuring Faithfulness in Chain-of-Thought 
Reasoning. Pre-print 2023.

• Likely to explain why there is so much 
debate on is X-method faithful.

• The faithfulness of post-hoc and attention 
is model and task-dependent.  

• Shown on importance measures and self-
explanations. Simultaneously works [1,2] 
with same conclusion.
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Abstract
To explain NLP models a popular approach is
to use importance measures, such as attention,
which inform input tokens are important for
making a prediction. However, an open ques-
tion is how well these explanations accurately
reflect a model’s logic, a property called faith-
fulness.

To answer this question, we propose Recur-
sive ROAR, a new faithfulness metric. This
works by recursively masking allegedly impor-
tant tokens and then retraining the model. The
principle is that this should result in worse
model performance compared to masking ran-
dom tokens. The result is a performance
curve given a masking-ratio. Furthermore,
we propose a summarizing metric using rel-
ative area-between-curves (RACU), which al-
lows for easy comparison across papers, mod-
els, and tasks.

We evaluate 4 different importance measures
on 8 different datasets, using both LSTM-
attention models and RoBERTa models. We
find that the faithfulness of importance mea-
sures is both model-dependent and task-
dependent. This conclusion contradicts previ-
ous evaluations in both computer vision and
faithfulness of attention literature.

1 Introduction

The ability to explain neural networks benefits both
accountability and ethics when deploying models
(Doshi-Velez et al., 2017) and helps develop a scien-
tific understanding of what models do (Doshi-Velez
and Kim, 2017). Particularly, in NLP, attention
(Bahdanau et al., 2015) is often used as an explana-
tion to provide insight into the logical process of a
model (Belinkov and Glass, 2019).

Attention, among other methods such as gra-
dient (Baehrens et al., 2010; Li et al., 2016) and
integrated gradient (Sundararajan et al., 2017; Mu-
drakarta et al., 2018), explain which input tokens

*Equal contribution.

are relevant for a given prediction. This type of
explanation is called an importance measure.

A major challenge in the field of interpretabil-
ity is ensuring that an explanation is faithful: “a
faithful interpretation is one that accurately rep-
resents the reasoning process behind the model’s
prediction” (Jacovi and Goldberg, 2020). Unfor-
tunately, importance measures that are claimed to
have strong theoretical foundations and are widely
used in practice (Bhatt et al., 2019) often later turn
out to be questionable (Hooker et al., 2019; Kinder-
mans et al., 2019; Adebayo et al., 2018; Jain and
Wallace, 2019; Wiegreffe and Pinter, 2019).

Accurately measuring if an explanation is faith-
ful is therefore paramount. Such faithfulness met-
rics are difficult to develop as the models are too
complex to know what the correct explanation is.
Doshi-Velez and Kim (2017) says a faithfulness
metric should use “some formal definition of inter-
pretability as a proxy for explanation quality.”

In this work, we use the definition of faithfulness
by Samek et al. (2017) and Hooker et al. (2019): if
information (input tokens) is truly important, then
removing it should result in a worse model per-
formance compared to removing random informa-
tion (tokens). We build upon the ROAR metric by
Hooker et al. (2019), which adds that it is necessary
to retrain the model after information is removed, to
avoid out-of-distribution issues. Finally, the model
performance is compared with removing random
information.

A limitation of ROAR is that it is theoretically
impossible to measure the faithfulness of an im-
portance measure when dataset redundancies exist.
For example, if two tokens are equally relevant but
only one of them is identified as important, ROAR
fails to remove the second token.

We propose Recursive ROAR which solves this
limitation. In addition to the Recursive ROAR met-
ric, we introduce a summarizing metric (RACU)
which aggregates the results into a scalar metric.
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Abstract

Instruction-tuned Large Language Models
(LLMs) excel at many tasks and will
even explain their reasoning, so-called self-
explanations. However, convincing and wrong
self-explanations can lead to unsupported confi-
dence in LLMs, thus increasing risk. Therefore,
it’s important to measure if self-explanations
truly reflect the model’s behavior. Such a mea-
sure is called interpretability-faithfulness and is
challenging to perform since the ground truth
is inaccessible, and many LLMs only have an
inference API. To address this, we propose
employing self-consistency checks to measure
faithfulness. For example, if an LLM says a
set of words is important for making a predic-
tion, then it should not be able to make its
prediction without these words. While self-
consistency checks are a common approach to
faithfulness, they have not previously been suc-
cessfully applied to LLM self-explanations for
counterfactual, feature attribution, and redac-
tion explanations. Our results demonstrate that
faithfulness is explanation, model, and task-
dependent, showing self-explanations should
not be trusted in general. For example, with sen-
timent classification, counterfactuals are more
faithful for Llama2, feature attribution for Mis-
tral, and redaction for Falcon 40B.

1 Introduction

Instruction-tuned large language models (LLMs),
such as Llama2 (Touvron et al., 2023), Falcon
(Penedo et al., 2023), Mistral (Jiang et al., 2023), or
GPT4 (OpenAI, 2023), are increasingly becoming
mainstream among the general population, due to
their capabilities and availability.

Instruction-tuned LLMs can even provide very
convincing explanations for their utterances and
will often do so unprompted. Because LLMs pro-
duce these explanations themselves and they pro-
vide justification for their own behavior, we term
them self-explanations. Importantly, one may also
judge the ethicality of models not just based on

Session 1 (prediction and explanation)

Is the following candidate a good fit for a
Senior SWE position? Answer only yes/no.
Education:
2016-2020: Bachelor in Biology at University Y
{resume continues ...}

User input

No
Model response

Make a minimal edit to the resume, 5 words
or less, such that you would answer yes.

Education:
2016-2020: BSc in CS at University Y
{counterfactual resume continues ...}

Counterfactual explanation

Session 2 (self-consistency)

Is the following candidate a good fit for a
Senior SWE position? Answer only yes/no.
{insert counterfactual resume}

Yes

Figure 1: Example of an LLM providing a counterfac-
tual self-explanation and using a self-consistency check
to evaluate if it is faithful. – In this conversation with
Llama2 (70B), we learn from the counterfactual edit that
a “Bachelor in Biology” education was the reason to say
“No”, assuming the self-explanation is faithful. Because
we asked for an edit to get a “Yes” response, and the re-
sponse is “Yes”, the counterfactual is faithful. Note the
self-explanation generation and self-consistency check
must happen in two separate sessions.

their predictions but also on their self-explanations.
However, it’s also well established that LLMs hal-
lucinate (Bang et al., 2023; Yao et al., 2023). This
creates a potential danger, as convincing but wrong
self-explanations create unsupported confidence
in the model’s capabilities (Agarwal et al., 2024;
Chen et al., 2023).
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Same conclusion in: [1] Bastings, J., et al. “Will You Find These 
Shortcuts?” A Protocol for Evaluating the Faithfulness of Input 
Salience Methods for Text Classification. EMNLP 2022

[2] Lanham, T., et al. Measuring Faithfulness in Chain-of-Thought 
Reasoning. Pre-print 2023.

• Likely to explain why there is so much 
debate on is X-method faithful.

• Only revealed using sufficiently accurate 
faithfulness metric at large scope. 

• The faithfulness of post-hoc and attention 
is model and task-dependent.  

• Shown on importance measures and self-
explanations. Simultaneously works [1,2] 
with same conclusion.



Recursive ROAR Self-explanations

faithfulness metric

Model and task-dependent Explanation, model and task-dependent

Masked fine-tuning creates 
consistently faithful explanations. ?
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Consistent faithfulness

Faithfulness Measurable Models Faithfulness as a reward function
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How to provide and ensure faithful explanations 
for complex general-purpose neural NLP models?

‣ By developing new paradigms that design models to be 
explained without employing architectural constraints. 

‣ By focusing on developing accurate faithfulness metrics. 

‣ By focusing on importance measures that have had a 
notoriously troubling history regarding faithfulness. 

‣ By taking advantage of properties specific to natural language 
and NLP models.

Research hypothesis

Research question

This question can be answered:



Model is designed such that 
measuring faithfulness is easy.

Model is designed such that 
it can explain itself.

Faithfulness 
measurable models Self-explanations

New Interpretability Paradigms

107

Any model can be explained.

Black-box models are more 
general purpose.

Only models designed to be 
explained can be explained.

Intrinsic models can have 
high-performance too.
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Post-hoc Interpretability for Neural NLP: A Survey

ANDREAS MADSEN∗, SIVA REDDY†‡, and SARATH CHANDAR∗§,Mila, Canada

Neural networks for NLP are becoming increasingly complex and widespread, and there is a growing concern
if these models are responsible to use. Explaining models helps to address the safety and ethical concerns
and is essential for accountability. Interpretability serves to provide these explanations in terms that are
understandable to humans. Additionally, post-hoc methods provide explanations after a model is learned and
are generally model-agnostic. This survey provides a categorization of how recent post-hoc interpretability
methods communicate explanations to humans, it discusses each method in-depth, and how they are validated,
as the latter is often a common concern.

CCS Concepts: • Computing methodologies→ Natural language processing; Neural networks.

Additional Key Words and Phrases: Interpretability, Transparency, Post-hoc explanations.
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1 INTRODUCTION
Large neural NLP models, most notably BERT-like models [20, 36, 70], have become highly wide-
spread, both in research and industry applications [134]. This increase of model complexity is
motivated by a general correlation between model size and test performance [20, 56]. Due to their
immense complexity, these models are generally considered black-box models. A growing concern
is therefore if it is responsible to deploy these models.
Concerns such as safety, ethics, and accountability are particularly important when machine

learning is used for high-stakes decisions, such as healthcare, criminal justice, !nance, etc. [102],
including NLP-focused applications such as translation, dialog systems, resume screening, search,
etc. [38]. For many of these applications, neural models have been shown to exhibit unwanted
biases and similar ethical issues [16, 20, 42, 75, 83, 102].

Doshi-Velez and Kim [37] argue, among others [68], that these ethical and safety issues stem from
an “incompleteness in the problem formalization”. While these issues can be partially prevented
with robustness and fairness metrics, it is often not possible to consider all failure modes. Therefore,
quality assessment should also be done through model explanations. Furthermore, when models do
fail in critical applications, explanations must be provided to facilitate the accountability process.
Providing these explanations is often a core motivation for interpretability. In Section 2 we provide
aditional motivating factors.
Doshi-Velez and Kim [37] de!ne interpretability as the “ability to explain or to present in un-

derstandable terms to a human”. However, what constitutes as an “understandable” explanation is
an interdisciplinary question. An important work from social science by Miller [79], argues that
e!ective explanations must be selective in the sense one must select “one or two causes from a
sometimes in!nite number of causes”. Such observation necessitates organizing interpretability
methods by how and what they selectively communicate.

∗Also with École Polytechnique de Montréal.
†Also with McGill University.
‡Also with Facebook CIFAR AI Chair.
§Also with Canada CIFAR AI Chair.

Authors’ address: Andreas Madsen, andreas.madsen@mila.quebec; Siva Reddy, siva.reddy@mila.quebec; Sarath Chandar,
sarath.chandar@mila.quebec, Mila, 6666 Rue Saint-Urbain, Montréal, Quebec, Canada.
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This survey presents such an organization in Table 1, where each row represents a communication
approach. For example, the !rst row describes input feature explanations that communicate what
tokens are most relevant for a prediction. In general, each row is ordered by how abstract the
communication approach is, although this is an approximation. Organizing by the method of
communication is discussed further in Section 1.1.

less information more information

low
erabstraction

higherabstraction

local explanation

input
features

adversarial
examples

in"uential
examples

counter-
factuals

natural
language

class explanation

concepts

global explanation

vocabulary

ensemble

linguistic
information

rules

post-hoc

black-box dataset gradient embeddings white-box

intrinsic

model speci!c

SHAP § 6.4 LIME § 6.3,
Anchors § 6.5

Gradient § 6.1,
IG § 6.2 Attention

SEAM § 7.2 HotFlip § 7.1

In"uence FunctionsH § 8.1
TracInC § 8.3 Representer Pointers† § 8.2 Prototype

Networks

PolyjuiceM,D

§ 9.1 MiCEM § 9.2

CAGEM,D

§ 10.1 GEFD , NILED

NIED § 11.1

Project § 12.1,
Rotate § 12.2

SP-LIME § 13.1

Behavioral
ProbesD § 14.1

Structural
ProbesD § 14.2

Structural
ProbesD § 14.2

Auxiliary
TaskD

SEARM § 15.1 Compositional Explanations of Neurons† § 15.2

Table 1. Overview of post-hoc interpretability methods, where § indicates the section the method is discussed.
Rows describe how the explanation is communicated, while columns describe what information is used to
produce the explanation. The order of both rows and columns indicates level of abstraction and amount of
information, respectively. However, this order is only approximate.
Furthermore, because this survey focuses on post-hoc methods, the intrinsic section of this table is incomplete
and merely meant to provide a few comparative examples. The specifc intrinsic methods shown are: A!ention
[9], GEF [69], NILE [63]. Prototype Networks and Auxiliary Task refer to types of models.
C : Depends on checkpoints during training. D : Depends on supplementary dataset. H : Depends on second-
order derivative. M : Depends on supplementary model. †: Depends only on dataset and white-box access.

Each interpretability method uses di#erent kinds of information to produce its explanation,
in Table 1 this is indicated by the columns1. The columns are ordered by an increasing level of
information. Again, this is an inexact ranking but serves as a useful tool to contrast the methods.
1Black-box: the method only evaluates the model. Dataset: the method has access to all training and validation observations.
Gradient: the gradient of the model is computed. Embeddings: the method uses the word embedding matrix. White-box: the
method knows everything about the model, such as all weights and all operations. However, the method is not speci!c to a
particular architecture. Model speci!c: the method is speci!c to the architecture. Note, neural model in NLP are usually
di#erentiability and have an embedding matrix. We therefore do not consider these properties constraints.
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Abstract
Interpretability is the study of explaining models in understandable
terms to humans. At present, interpretability is divided into two
paradigms: the intrinsic paradigm, which believes that only models
designed to be explained can be explained, and the post-hoc para-
digm, which believes that black-box models can be explained. At the
core of this debate is how each paradigm ensures its explanations
are faithful, i.e., true to the model’s behavior. This is important, as
false but convincing explanations lead to unsupported con!dence
in arti!cial intelligence (AI), which can be dangerous. This article’s
perspective is that we should think about new paradigms while
staying vigilant regarding faithfulness. First, by examining the his-
tory of paradigms in science, we see that paradigms are constantly
evolving. Then, by examining the current paradigms, we can un-
derstand their underlying beliefs, the value they bring, and their
limitations. Finally, this article presents 3 emerging paradigms for
interpretability. The !rst paradigm designs models such that faith-
fulness can be easily measured. Another optimizes models such
that explanations become faithful. The last paradigm proposes to
develop models that produce both a prediction and an explanation.

CCS Concepts
• Computing methodologies→ Neural networks; Natural lan-
guage processing; • Human-centered computing→ Interaction
paradigms; • Social and professional topics → Governmental
regulations.
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1 Introduction
There was a time in physics, in the late 17th century, when Isaac
Newton insisted that light is a particle and Christiaan Huygens
insisted that light is a wave. These ideas were seemingly irreconcil-
able at the time. Of course, now we have a much better theory, and
we understand that light can be seen as both a wave and a particle.1

In 1874, Georg Cantor proposed set theory and showed there ex-
ists at least two kinds of in!nity. This divided the mathematical !eld.
The Intuitionists, who named Cantor’s theory nonsense, thought
that math was a pure creation of the mind and that these in!nities
weren’t real. Henri Poincaré said: “Later generations will regard
Mengenlehre (set theory) as a disease from which one has recov-
ered” [22]. Leopold Kronecker called Cantor a “scienti!c charlatan”
and “corruptor of the youth” [15].

The other group, the Formalists, thought that by using Cantor’s
set theory, all math could be proven from this fundamental founda-
tion. David Hilbert said: “No one shall expel us from the paradise
that Candor has created” and “In opposition to the foolish Ignora-
mus (we will not know; i.e., intuitionists), our slogan shall be: We
must know – we will know” [38].

Today, we know in!nities are important concepts; thus, the In-
tuitionists were wrong. However, Kurt Gödel showed that the For-
malists were also wrong. Unfortunately, there exist true statements
which can never be proven [21, Gödel’s incompleteness theorem].

These are just two examples in science and mathematics where
there have been strong debates and beliefs due to con"icting paradigms.
Science historian Thomas Kuhn de!nes a scienti!c paradigm as:
“universally recognized scienti!c achievements that, for a time, pro-
vide model problems and solutions to a community of practitioners”
[29].

1Known as the wave-particle duality concept.
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Abstract

Instruction-tuned Large Language Models
(LLMs) excel at many tasks and will
even explain their reasoning, so-called self-
explanations. However, convincing and wrong
self-explanations can lead to unsupported confi-
dence in LLMs, thus increasing risk. Therefore,
it’s important to measure if self-explanations
truly reflect the model’s behavior. Such a mea-
sure is called interpretability-faithfulness and is
challenging to perform since the ground truth
is inaccessible, and many LLMs only have an
inference API. To address this, we propose
employing self-consistency checks to measure
faithfulness. For example, if an LLM says a
set of words is important for making a predic-
tion, then it should not be able to make its
prediction without these words. While self-
consistency checks are a common approach to
faithfulness, they have not previously been suc-
cessfully applied to LLM self-explanations for
counterfactual, feature attribution, and redac-
tion explanations. Our results demonstrate that
faithfulness is explanation, model, and task-
dependent, showing self-explanations should
not be trusted in general. For example, with sen-
timent classification, counterfactuals are more
faithful for Llama2, feature attribution for Mis-
tral, and redaction for Falcon 40B.

1 Introduction

Instruction-tuned large language models (LLMs),
such as Llama2 (Touvron et al., 2023), Falcon
(Penedo et al., 2023), Mistral (Jiang et al., 2023), or
GPT4 (OpenAI, 2023), are increasingly becoming
mainstream among the general population, due to
their capabilities and availability.

Instruction-tuned LLMs can even provide very
convincing explanations for their utterances and
will often do so unprompted. Because LLMs pro-
duce these explanations themselves and they pro-
vide justification for their own behavior, we term
them self-explanations. Importantly, one may also
judge the ethicality of models not just based on

Session 1 (prediction and explanation)

Is the following candidate a good fit for a
Senior SWE position? Answer only yes/no.
Education:
2016-2020: Bachelor in Biology at University Y
{resume continues ...}

User input

No
Model response

Make a minimal edit to the resume, 5 words
or less, such that you would answer yes.

Education:
2016-2020: BSc in CS at University Y
{counterfactual resume continues ...}

Counterfactual explanation

Session 2 (self-consistency)

Is the following candidate a good fit for a
Senior SWE position? Answer only yes/no.
{insert counterfactual resume}

Yes

Figure 1: Example of an LLM providing a counterfac-
tual self-explanation and using a self-consistency check
to evaluate if it is faithful. – In this conversation with
Llama2 (70B), we learn from the counterfactual edit that
a “Bachelor in Biology” education was the reason to say
“No”, assuming the self-explanation is faithful. Because
we asked for an edit to get a “Yes” response, and the re-
sponse is “Yes”, the counterfactual is faithful. Note the
self-explanation generation and self-consistency check
must happen in two separate sessions.

their predictions but also on their self-explanations.
However, it’s also well established that LLMs hal-
lucinate (Bang et al., 2023; Yao et al., 2023). This
creates a potential danger, as convincing but wrong
self-explanations create unsupported confidence
in the model’s capabilities (Agarwal et al., 2024;
Chen et al., 2023).
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Abstract

A common approach to explaining NLP mod-
els is to use importance measures that express
which tokens are important for a prediction. Un-
fortunately, such explanations are often wrong
despite being persuasive. Therefore, it is essen-
tial to measure their faithfulness. One such met-
ric is if tokens are truly important, then mask-
ing them should result in worse model perfor-
mance. However, token masking introduces out-
of-distribution issues, and existing solutions that
address this are computationally expensive and
employ proxy models. Furthermore, other met-
rics are very limited in scope. This work proposes
an inherently faithfulness measurable model that
addresses these challenges. This is achieved us-
ing a novel fine-tuning method that incorporates
masking, such that masking tokens become in-
distribution by design. This differs from existing
approaches, which are completely model-agnostic
but are inapplicable in practice. We demonstrate
the generality of our approach by applying it to
16 different datasets and validate it using statisti-
cal in-distribution tests. The faithfulness is then
measured with 9 different importance measures.
Because masking is in-distribution, importance
measures that themselves use masking become
consistently more faithful. Additionally, because
the model makes faithfulness cheap to measure,
we can optimize explanations towards maximal
faithfulness; thus, our model becomes indirectly
inherently explainable.
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treal, Montreal, Canada 3Computer Science and Linguistics,
McGill University, Montreal, Canada 4Facebook CIFAR
AI Chair 5Canada CIFAR AI Chair. Correspondence
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Siva Reddy <siva.reddy@mila.quebec>, Sarath Chandar
<sarath.chandar@mila.quebec>.
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1. Introduction
As machine learning models are increasingly being de-
ployed, the demand for interpretability to ensure safe op-
eration increases (Doshi-Velez & Kim, 2017). In NLP, im-
portance measures such as attention or integrated gradient
are a popular way of explaining which input tokens are im-
portant for making a prediction (Bhatt et al., 2019). These
explanations are not only used directly to explain models
but are also used in other explanations such as contrastive
(Yin & Neubig, 2022), counterfactuals (Ross et al., 2021),
and adversarial explanations (Ebrahimi et al., 2018).

Unfortunately, importance measures (IMs) are often found
to provide false explanations despite being persuasive (Jain
& Wallace, 2019; Hooker et al., 2019). For example, a given
IMs might not be better at revealing important tokens than
pointing at random tokens (Madsen et al., 2022a). This
presents a risk, as false but persuasive explanations can lead
to unsupported confidence in a model. Therefore, it’s im-
portant to measure faithfulness. Jacovi & Goldberg (2020)
defines faithfulness as: “how accurately it (explanation) re-
flects the true reasoning process of the model”. In this work,
we propose a methodology that enables existing models to
support measuring faithfulness by design.

Measuring faithfulness is challenging, as there is generally
no known ground-truth for the correct explanation. Instead,
faithfulness metrics have to use proxies. One such proxy
is the erasure-metric by Samek et al. (2017): if tokens are
truly important, then masking them should result in worse
model performance compared to masking random tokens.

However, masking tokens can create out-of-distribution is-
sues. This can be solved by retraining the model after al-
legedly important tokens have been masked (Hooker et al.,
2019; Madsen et al., 2022a). Unfortunately, this is computa-
tionally expensive, leaks the gold label, and the measured
model is now different from the model of interest.

In general, the cost of proxies has been some combination
of incorrect assumptions, expensive computations, or using
a proxy-model (Jain & Wallace, 2019; Bastings et al., 2022;
Madsen et al., 2022a). Based on previous work, we propose
the following desirable, which to the best of our knowledge,
no previous faithfulness metric for importance measures
satisfies in all aspects, but we satisfy:

1
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Evaluating the Faithfulness of Importance Measures in NLP by
Recursively Masking Allegedly Important Tokens and Retraining
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Abstract
To explain NLP models a popular approach is
to use importance measures, such as attention,
which inform input tokens are important for
making a prediction. However, an open ques-
tion is how well these explanations accurately
reflect a model’s logic, a property called faith-
fulness.

To answer this question, we propose Recur-
sive ROAR, a new faithfulness metric. This
works by recursively masking allegedly impor-
tant tokens and then retraining the model. The
principle is that this should result in worse
model performance compared to masking ran-
dom tokens. The result is a performance
curve given a masking-ratio. Furthermore,
we propose a summarizing metric using rel-
ative area-between-curves (RACU), which al-
lows for easy comparison across papers, mod-
els, and tasks.

We evaluate 4 different importance measures
on 8 different datasets, using both LSTM-
attention models and RoBERTa models. We
find that the faithfulness of importance mea-
sures is both model-dependent and task-
dependent. This conclusion contradicts previ-
ous evaluations in both computer vision and
faithfulness of attention literature.

1 Introduction

The ability to explain neural networks benefits both
accountability and ethics when deploying models
(Doshi-Velez et al., 2017) and helps develop a scien-
tific understanding of what models do (Doshi-Velez
and Kim, 2017). Particularly, in NLP, attention
(Bahdanau et al., 2015) is often used as an explana-
tion to provide insight into the logical process of a
model (Belinkov and Glass, 2019).

Attention, among other methods such as gra-
dient (Baehrens et al., 2010; Li et al., 2016) and
integrated gradient (Sundararajan et al., 2017; Mu-
drakarta et al., 2018), explain which input tokens

*Equal contribution.

are relevant for a given prediction. This type of
explanation is called an importance measure.

A major challenge in the field of interpretabil-
ity is ensuring that an explanation is faithful: “a
faithful interpretation is one that accurately rep-
resents the reasoning process behind the model’s
prediction” (Jacovi and Goldberg, 2020). Unfor-
tunately, importance measures that are claimed to
have strong theoretical foundations and are widely
used in practice (Bhatt et al., 2019) often later turn
out to be questionable (Hooker et al., 2019; Kinder-
mans et al., 2019; Adebayo et al., 2018; Jain and
Wallace, 2019; Wiegreffe and Pinter, 2019).

Accurately measuring if an explanation is faith-
ful is therefore paramount. Such faithfulness met-
rics are difficult to develop as the models are too
complex to know what the correct explanation is.
Doshi-Velez and Kim (2017) says a faithfulness
metric should use “some formal definition of inter-
pretability as a proxy for explanation quality.”

In this work, we use the definition of faithfulness
by Samek et al. (2017) and Hooker et al. (2019): if
information (input tokens) is truly important, then
removing it should result in a worse model per-
formance compared to removing random informa-
tion (tokens). We build upon the ROAR metric by
Hooker et al. (2019), which adds that it is necessary
to retrain the model after information is removed, to
avoid out-of-distribution issues. Finally, the model
performance is compared with removing random
information.

A limitation of ROAR is that it is theoretically
impossible to measure the faithfulness of an im-
portance measure when dataset redundancies exist.
For example, if two tokens are equally relevant but
only one of them is identified as important, ROAR
fails to remove the second token.

We propose Recursive ROAR which solves this
limitation. In addition to the Recursive ROAR met-
ric, we introduce a summarizing metric (RACU)
which aggregates the results into a scalar metric.
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Pitfalls and Principles



Principles

111

a) Use an intervention, but avoid out-of-distribution issues. 
b) Use a ground truth, but make sure it’s an actual ground truth.

The two options for measuring faithfulness:



Pitfalls

112

a) If correlating, it must be done with a known faithful explanation (which likely doesn't 
exist). 

b) Don't assume the model is reasonable (or accurate?). 
c) Don't assume you know what correct explanation looks like (follows previous). 
d) Don't mutate the internals of a model to validate explanation, you may escape the 

manifold. 
e) Don't probe the model behavior with out-of-distribution data. 
f) Don't use a different model to comment about the original model, unless the model 

behavior is identical. 
g) Don't assume faithfulness generalize to other datasets or models without validation. 
h) Not declaring what faithfulness measures. For example, gradient is faithful it is just 

not a measure of importance. 
i) Thinking there is just one correct explanation (importance measure) without a 

mathematical proof of uniqueness.
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Explanation-interpretation gap

Faithfulness metric that 
reflects how we communicate 

explanations to humans.

e.g. “Without this token the 
model prediction changes 

significantly”

Mathematical/axiomatic 
faithfulness metric.

e.g. “How good is the gradient 
approximation?”, “are they 

Sharply values?”

Explanation-interpretation gap
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All the gaps

Faithfulness metric that 
reflects how we communicate 

explanations to humans.

e.g. “Without this token the 
model prediction changes 

significantly”

e.g. “How good is the gradient 
approximation?”, “are they 

Sharply values?”

Approximations

e.g. Sharply 
approximation.

Actual issues

e.g.
x ⊙ ∇x f(x)

Explanation-interpretation gapApproximation errorInterference error 
+ leakage error

Mathematical/axiomatic 
faithfulness metric.



Survey



17

less information more information

low
er

abstraction
higher

abstraction

local explanation

input
features

adversarial
examples

influential
examples

counter-
factuals

natural
language

class explanation

concepts

global explanation

vocabulary

ensemble

linguistic
information

rules

post-hoc

black-box dataset gradient embeddings white-box

intrinsic

model specific

Occlusion
-based § 2.5.2

Gradient
-based § 2.5.1

Attenton
-based § 2.5.3

SEAM § A.1.2 HotFlip § A.1.1

Influence FunctionsH § A.2.1
TracInC § A.2.3 Representer Pointers† § A.2.2 Prototype

Networks

PolyjuiceM,D

§ 2.6.1 MiCEM § 2.6.2

predict-then-
explainM § 2.7.2

explain-then-
predictM § 2.7.1

NIED § A.3.1

Project § A.4.1,
Rotate § A.4.2

SP-LIME § A.5.1

Behavioral
ProbesD § A.6.1

Structural
ProbesD § A.6.2

Structural
ProbesD § A.6.2

Auxiliary
TaskD

SEARM § A.7.1 Compositional Explanations of Neurons† § A.7.2

Table 2.1 Overview of post-hoc interpretability methods, where § indicates the section the
method is discussed. Rows describe how the explanation is communicated, while columns
describe what information is used to produce the explanation. The order of both rows and
columns indicates the level of abstraction and amount of information, respectively. However,
this order is only approximate.
Columns: Black-box : the method only evaluates the model. Dataset: the method has access
to all training and validation observations. Gradient: the gradient of the model is computed.
Embeddings: the method uses the word embedding matrix. White-box: the method knows
everything about the model, such as all weights and all operations. However, the method is not
specific to a particular architecture. Model specific: the method is specific to the architecture.
Note that neural models in NLP are usually di!erentiable and have an embedding matrix.
We therefore do not consider these as architectural constraints.
Superscript: C: Depends on checkpoints during training. D: Depends on supplementary
dataset. H: Depends on second-order derivative. M: Depends on supplementary model. †:
Depends only on dataset and white-box access.
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What does the model consider a valid opposite example?

Counterfactuals
Local Explanation
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What would a generated natural language explanation be?

Natural Language
Local Explanation
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What concepts (e.g. occupations) can explain a class?

Concepts
Class Explanation



rule

rule

Flips

natural language
input feature

 we never feel anything for these characters

handsome but unfulfilling suspense drama 

the year 's best and most unpredictable comedy 0.91

0.95

0.18

1

0

0

1

0

0

1

0

0

1

0

0

1

0

0

0.91

0.95

1

0

 we never feel anything for these characters

handsome but unfulfilling suspense drama 

the year 's best and most unpredictable comedy

 we never feel anything for these characters

handsome but unfulfilling suspense drama 

the year 's best and most unpredictable comedy

 we never feel anything for these characters

handsome but unfulfilling suspense drama 

the year 's best and most unpredictable comedy

 we never feel anything for these characters

handsome but unfulfilling suspense drama 

the year 's best and most unpredictable comedy

 we never feel anything for these characters

the year 's best and most unpredictable comedy

the year 's finest and most unpredictable comedy

 we never feel anything for these people

0.30

0.03

0.91

0.95

1

0 we never feel anything for these characters

the year 's best and most unpredictable comedy

 we never empatize for these characters

0.13

0.11

the best and most unpredictable comedy this year

0.91

0.95

0.91

0.95

0.91

0.95

0.91

0.95

0.18

0.18

0.18

0.18

1

0

1

0

1

0

1

0

0.87

0.93

1

1

1

1

0.91 1

0

the year 's best and most unpredictable comedy

1a delightfully unpredictable , hilarious comedy 3.82

-1.51loud and thoroughly obnoxious comedy

0.91 1

0

the year 's best and most unpredictable comedy

1a delightfully unpredictable , hilarious comedy 1.02

-0.43a singularly off-putting romantic comedy

1the year 's best and most unpredictable comedy 0.91

1

0 we never feel anything for these characters

the year 's best and most unpredictable comedy 0.91

0.95

the year 's worst and least unpredictable comedy 0.11

the year 's worst and most predictable comedy 0.04

 we can feel anything for these animals 0.01

0 we never feel anything for these characters 0.95

 we feel everything for these characters 0.02

1

0 we never feel anything for these characters

the year 's best and most unpredictable comedy 0.91

0.95

unpredictable comedies are funny

it is important to feel for characters

the year 's best and most unpredictable comedy

unpredictable comedies are funny

explanation 

the year 's finest and most unforeseeable comedy 0.08

the year 's worst and most unpredictable comedy 0.59

 we can feel anything for these characters 0.73

 we never feel anything for these characters

the year 's best and most unpredictable comedy

PCA
unfulfilling

unpredictable

characters
comedy

drama
suspense

handsomfeel

the anythingwe
these but

most

t-SNE
unfulfilling suspense

drama
comedy

unpredictable

characters
handsom

these

the
most

feel
we

but
and

for
best

never
year

anything

co
me

dy fee
l

ne
ve

r
ha

nd
so

m
un

fu
lfil

lin
g

wo
rst

0 .4.2
effect

la
ye

r

heads
1 2 3 54 6 7 8 9

1
2
3
4
5

0.91

0.95

1

0 we never feel anything for these characters

the year 's best and most unpredictable comedy

 we never empatize for these characters

0.13

0.11

the best and most unpredictable comedy this year

DET year 's    this year

feel    empatize 4%

1%

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

--

-

- -

- -

-

-

--

--

0.95

0.95

0.98

0.98

0 2 4 6 8 10 12 14 16 18 20 22 24
layer

Part-of-Speech
Constituents

Dependencies
Entities

Semantic Role Labeling
Coreference

F1

91.9
91.4
96.1
95.5
87.0
96.7

How does the model relate words to each other?

Vocabulary
Global Explanation
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What examples are representative of the model?

Ensamble
Global Explanation
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What linguistic information does the model use?

Linguistic information
Global Explanation
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Table 2.1 Overview of post-hoc interpretability methods, where § indicates the section the
method is discussed. Rows describe how the explanation is communicated, while columns
describe what information is used to produce the explanation. The order of both rows and
columns indicates the level of abstraction and amount of information, respectively. However,
this order is only approximate.
Columns: Black-box : the method only evaluates the model. Dataset: the method has access
to all training and validation observations. Gradient: the gradient of the model is computed.
Embeddings: the method uses the word embedding matrix. White-box: the method knows
everything about the model, such as all weights and all operations. However, the method is not
specific to a particular architecture. Model specific: the method is specific to the architecture.
Note that neural models in NLP are usually di!erentiable and have an embedding matrix.
We therefore do not consider these as architectural constraints.
Superscript: C: Depends on checkpoints during training. D: Depends on supplementary
dataset. H: Depends on second-order derivative. M: Depends on supplementary model. †:
Depends only on dataset and white-box access.
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a) The method does not assume a known true explanation. 
b) The method measures faithfulness of an explanation w.r.t. a specific model instance 

and single observation. For example, it is not a proxy-model that is measured. 
c) The method uses only the original dataset, e.g. does not introduce spurious 

correlations. 
d) The method only uses inputs and intermediate representations that are in-distribution 

w.r.t. the model. 
e) The method is computationally cheap by not training/fine-tuning repeatedly and only 

computes explanations of the test dataset. 
f) The method can be applied to any classification task. 
g) The method can be applied to any importance measure.

Recursive ROAR: satisfies (a), (c), (d), (f), and (g).



Leaking target variable
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a) Say “awful” is a strong indicator of negative sentiment. 
b) Recursive ROAR will remove “awful” from every negative sentiment observation. 
c) “awful” is now a perfect predictor of positive sentiment. 

e.g. “I have an awful strong crush on this actor”

Thought experiment

We want an importance measure for the correct label, as removing the tokens that are relevant 
for making a wrong prediction, would help the performance of the model.
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43

ROAR requires retraining the model, for every evaluation step, this is infeasible. Instead,
we approximate it by removing a relative number of tokens. We discuss this more in
Appendix B.3. The disadvantage of this approximation is that Recursive ROAR might
not remove all redundancies unless the step size is one token. We discuss this more in
Appendix B.3.

3.2.3 Validation on a synthetic problem

To show that Recursive ROAR provides an optimal faithfulness metric, we validate it on
the same generated synthetic problem (with input x and output y) presented in the original
ROAR paper [14]:

x = az

10 + dω + ε

10 , y =






1 z > 0

0 z → 0
. (3.1)

Quoting Hooker et al. [14] “All random variables were sampled from a standard normal
distribution. The vectors a and d are 16-dimensional vectors that were sampled once to
generate the dataset. In a only the first 4 values have nonzero values to ensure that there are
exactly 4 informative features. The values z, ω, and ε are sampled independently for each
example.”

The ground truth removal order is to remove the first 4 features (the specific order does not
matter) followed by the remaining irrelevant features. Note that these first 4 features are
mutually redundant. For comparison, we also include the worst case, where the first 4 features
are removed last.

Figure 3.3 Using the weights of a linear model as the explanation, ROAR and Recursive
ROAR are applied to the problem described in (3.1). In addition, the ground truth and worst
case are shown. Recursive ROAR and the ground truth are identical.

In Hooker et al. [14], they do not use a specific importance measure. Instead, they use
predefined removal orders. This avoids the redundancy issue in the synthetic task, although
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•  are relevant features, 
but mutually redundant. All other 
features are irrelevant to the target 
value. 

•  are sampled for each 
observation.  are sampled once. 
A standard normal distribution is used. 

• The explanation is the weights of a 
logistic regression.
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Figure 1: Comparison of performance with and without neural attention on text classification
(IMDB), Natural Language Inference tasks (SNLI) and Neural Machine Translation (News Com-
mentary). Here, ↵ and c denote attention weights and context vector respectively. The results show
that attention does not substantially effect performance on text classification. However, the same
does not hold for other tasks.

In comparison to the existing work on interpretability, we analyze attention mechanism on a more
diverse set of NLP tasks that include text classification, pairwise text classification (such as NLI), and
text generation tasks like neural machine translation (NMT). Moreover, we do not restrict ourselves
to a single attention mechanism and also explore models with self-attention. For examining the
interpretability of attention weights, we perform manual evaluation. Our key contributions are:

1. We extend the analysis of attention mechanism in prior work to diverse NLP tasks and provide
a comprehensive picture which alleviates seemingly contradicting observations.

2. We identify the conditions when attention weights are interpretable and correlate with feature
importance measures – when they are computed using two vectors which are both functions of
the input (Figure 1b, c). We also explain why attention weights are not interpretable when the
input has only single sequence (Figure 1a), an observation made by Jain & Wallace (2019), by
showing that they can be viewed as a gating unit.

3. We validate our hypothesis of interpretability of attention through manual evaluation.

2 TASKS AND DATASETS

We investigate the attention mechanism on the following three task categories.

1. Single Sequence tasks are those where the input consists of a single text sequence. For in-
stance, in sentiment analysis, the task is to classify a review as positive or negative. This also
includes other text classification tasks such as topic categorization. For the experiments, in
this paper, we use three review rating datasets: (1) Stanford Sentiment Treebank (Socher et al.,
2013), (2) IMDB (Maas et al., 2011) and (3) Yelp 20171 and one topic categorization dataset
AG News Corpus (business vs world).2

2. Pair Sequence tasks comprise of a pair of text sequences as input. The tasks like NLI and
question answering come under this category. NLI involves determining whether a hypoth-
esis entails, contradicts, or is undetermined given a premise. We use Stanford Natural Lan-
guage Inference (SNLI) (Bowman et al., 2015) and Multi-Genre Natural Language Inference

1from www.yelp.com/dataset challenge
2www.di.unipi.it/ gulli/AG corpus of news articles.html
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that attention does not substantially effect performance on text classification. However, the same
does not hold for other tasks.
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2. Pair Sequence tasks comprise of a pair of text sequences as input. The tasks like NLI and
question answering come under this category. NLI involves determining whether a hypoth-
esis entails, contradicts, or is undetermined given a premise. We use Stanford Natural Lan-
guage Inference (SNLI) (Bowman et al., 2015) and Multi-Genre Natural Language Inference

1from www.yelp.com/dataset challenge
2www.di.unipi.it/ gulli/AG corpus of news articles.html

2

single sequence to class

ui = tanh(W1hx
i + b)

αi =
exp(uT

i c)
∑j exp(uT

j c)

Tasks: SST, IMDB, Anemia, Diabetes Tasks: SNLI, bAbI-1, bAbI-2, bAbI-3
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[1] Vashishth et al, arXiv 2019, “Attention Interpretability Across NLP Tasks” 
[2] Jain, ACL 2019, “Attention is not Explanation”.



Paper Compare with other 
importance measure

Test if mutated 
attention can yield 
same prediction

Test if learned adversarial 
attention can yield same 

prediciton.
Attention is not explanation (ACL 2019) x x
Attention is not not explanation (EMNLP 
2019) x

Attention interpretability Across NLP Tasks 
(ArXiv 2019, ICLR 2020 Reject) x x

Is Attention Interpretable (ACL 2019) x
Learning to Deceive with Attention-Based 
Explanations (ACL 2020) x

Is Sparse Attention more Interpretable 
(ACL 2021) x x x

Criticism: Mutating the 
attention causes 

out-out-distribution 
issues.

Criticism: Learning a 
different models says 

nothing about the original 
model.

Criticism: Other methods 
are not ground-truths.

Papers on the faithfulness of attention
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FMM



0% masked performance 100% masked performance

No performance issues
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In-distribution testing

136

• Because random masking is different 
form targeted masking, 
each explanation need to be tested.  

• Often out-of-distribution issues with 
plain fine-tuning.  

• No out-of-distribution issues with 
masked fine-tuning.



Faithfulness

137



Masked CLM



Sequential output

1. Performance Measure: ROUGE, BLEU, Levenstein. 

2. Importance measure: Leave-on-out, naive aggregation, 
optimization, etc.

139

Requirements are: 1) performance metric and 2) importance 
measure / ranking.



Masked CLMs
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Learn masking support during pre-training 
Mask random tokens during pre-training with a next-token objective.



Masked CLMs
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1. An Faithfulness Measurable model. 

2. Get highly faithful occlusion-based importance measure.

Learn masking support during pre-training 
Mask random tokens during pre-training with a next-token objective.
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Masked CLMs
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The
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quick [M] [M] [M]



Masked CLMs
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Masked CLMs
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quick [M] [M] [M]
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Masked CLMs
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1. An Faithfulness Measurable model. 

2. Get highly faithful occlusion-based importance measure. 

3. Zero-cost parallel-token generation.

Learn masking support during pre-training 
Mask random tokens during pre-training with a next-token objective.



Masked CLMs
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The [M] washed hands before

she

1. An Faithfulness Measurable model. 

2. Get highly faithful occlusion-based importance measure. 

3. Zero-cost parallel-token generation. 

4. Many established techniques from MLM.

Learn masking support during pre-training 
Mask random tokens during pre-training with a next-token objective.



Masked CLMs
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The Doctor washed hands before

He

1. An Faithfulness Measurable model. 

2. Get highly faithful occlusion-based importance measure. 

3. Zero-cost parallel-token generation. 

4. Many established techniques from MLM.

Learn masking support during pre-training 
Mask random tokens during pre-training with a next-token objective.



Masked CLMs
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1. An Faithfulness Measurable model. 

2. Get highly faithful occlusion-based importance measure. 

3. Zero-cost parallel-token generation. 

4. Many established techniques from MLM. 

5. Standard for how to anonymize data.

Learn masking support during pre-training 
Mask random tokens during pre-training with a next-token objective.

The patient named [M] has



MaSF



Manifolds

X

Y

Z

X

Y

Z



Desirables

• Should assume little of the model’s internals. For example, do 
not assume internally normally distributed. 

• Should only consider the model, not the input distribution 
(sensory anomaly detection). 

• Should provide non-ambiguous metrics.



Empirical CDF

x
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Empirical CDF

x
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Empirical CDF

p = ℙ(X ≤ x)

≈
1

|D | ∑
v∈D

1[v ≤ x] where D ∼ X

p = min(ℙ(X ≤ x), ℙ(X > x))
= min(ℙ(X ≤ x), 1 − ℙ(X ≤ x))

Two-sided p-value

One-sided p-value

x
x
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The movie was great . I really liked it .
154

MaSF



embedingsLayers

Tokens

Hidd
en

 Size

The movie was great . I really liked it .
154

MaSF



embedingsLayers

Tokens

Hidd
en

 Size

Layers

Hidden Size

p-values

Max-aggregation 
+ CDF lookup

The movie was great . I really liked it .
154

MaSF



embedingsLayers

Tokens

Hidd
en

 Size

Layers

Hidden Size

p-values

Max-aggregation 
+ CDF lookup

p-values
Layers

p-value

Simes-aggregation 
+ CDF lookup

Fisher-aggregation 
+ CDF lookup

The movie was great . I really liked it .
154

MaSF



Bonferroni Simes

N
min
i=1

pi ⋅ N
i

< 5 %

pi <
5 %
N

N ⋅
N

min
i=1

pi < 5 %

where p1 < p2 < ⋯ < pN

Fisher

T = − 2
N

∑
i=1

ln(pi)
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Avoid p-fishing by dividing 
the threshold by N.

Consider all p-values. 
For the smallest p-value 

(i=1) it is the same.

No clear intuition. Follows 
a chi-squared distribution.

P-value aggregation



FMMs for other explanations



Concept explanations

157

• Faithfulness of concepts is often measured using interventions in the 
intermediate state. 

• These intervention likely cause out-of-distribution issues.

Grevy's Zebra Stallion, CC BY-SA 2.0

Stribes

Savana

Zebra

Horse



Self-explanations



Self-modeling

A model should be able to simulate itself, 
to explain itself in general. 



Are you able to answer who was the 
first president of the United States? 
Yes/No

No

Who was the first president of the 
United States?

George Washington

Meta-cognition question Direct question

Self-modeling



How does this generalize?

Counterfactual 
explanation prompt.

The movie was awful.

Feature attribution 
explanation prompt.

Redaction 
explanation prompt.

Important words: “great”. The movie was [REDACTED].

Classification prompt.

Negative Unknown

Classification prompt.

Session 3

Session 2

Session 1

Positive

Optimize for this

161



How does this generalize?

Counterfactual 
explanation prompt.

The movie was awful.

Feature attribution 
explanation prompt.

Redaction 
explanation prompt.

Important words: “great”. The movie was [REDACTED].

Classification prompt.

Negative Unknown

Classification prompt.

Session 3

Session 2

Session 1

Positive

Optimize for this Evaluate on this
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On Measuring Faithfulness of Natural Language Explanations

Letitia Parcalabescu and Anette Frank
Computational Linguistics Department

Heidelberg University

Abstract

Large language models (LLMs) can explain
their own predictions, through post-hoc or
Chain-of-Thought (CoT) explanations. How-
ever the LLM could make up reasonably sound-
ing explanations that are unfaithful to its un-
derlying reasoning. Recent work has designed
tests that aim to judge the faithfulness of either
post-hoc or CoT explanations. In this paper
we argue that existing faithfulness tests are not
actually measuring faithfulness in terms of the
models’ inner workings, but only evaluate their
self-consistency on the output level. The aims
of our work are two-fold. i) We aim to clarify
the status of existing faithfulness tests in terms
of model explainability, characterising them as
self-consistency tests instead. This assessment
we underline by constructing a Comparative
Consistency Bank for self-consistency tests that
for the first time compares existing tests on a
common suite of 11 open-source LLMs and
5 datasets – including ii) our own proposed
self-consistency measure CC-SHAP. CC-SHAP
is a new fine-grained measure (not test) of
LLM self-consistency that compares a model’s
input contributions to answer prediction and
generated explanation. With CC-SHAP, we
aim to take a step further towards measuring
faithfulness with a more interpretable and fine-
grained method. Code available at https:

//github.com/Heidelberg-NLP/CC-SHAP

1 Introduction

Large language models (LLMs) are capable of gen-
erating answers in numerous tasks of increasing dif-
ficulty, acting as chatbots (OpenAI, 2023; Touvron
et al., 2023), as programming (Chen et al., 2021) or
as scientific writing assistants (Taylor et al., 2022).
But they often enough behave unintuitively, show-
ing undesirable behaviour/features. For example
they can endorse the user’s misconceptions during
conversation (Perez et al., 2023), or generate Chain-
of-Thought (CoT) (Wei et al., 2022) explanations
that hide their sensitivity to biasing features (Turpin

et al., 2023), they can be surprisingly insensitive
to the correctness of labels in in-context learning
(Min et al., 2022) and can produce correct predic-
tions even with irrelevant or misleading prompts
(Webson and Pavlick, 2022).

Especially in cases of unintuitive behaviour, ex-
planations for their way of acting would be helpful.
Even though LLMs can provide plausibly sounding
explanations for their answers, recent work argues
that model generated natural language explanations
(NLEs) are often unfaithful (Atanasova et al., 2023;
Lanham et al., 2023). Obtaining faithful expla-
nations that accurately reflect the true reasoning
process of the model (Jacovi and Goldberg, 2020)
is important for understanding the reasons behind
an AI system’s answer and is instrumental for cre-
ating trustworthy AI. Being able to measure the
faithfulness of an explanation is most critical when
a model provides an answer we are unable to judge
– whether it is AI uncovering new scientific facts or
ChatGPT helping with homework.

Recent work aims to assess the faithfulness of
LLM-produced NLEs through faithfulness tests
(Atanasova et al., 2023; Turpin et al., 2023; Lan-
ham et al., 2023; Wiegreffe et al., 2021). But these
studies are hard to compare as they don’t use the
same models, nor the same data (Table 2). They
measure faithfulness by manipulating a model’s
input and measure whether its prediction changes
or stays consistent to the original answer. In this
paper:

i) We argue that when aiming to measure NLE
faithfulness, current tests in reality measure
the self-consistency of model outputs – with-
out giving insight of a model’s inner working
and reasoning processes (§3).

ii) We introduce CC-SHAP, a new fine-grained
and explainable measure of self-consistency
(§4) gauging how well input contributions
align when a model produces a prediction and
its explanation. It works both for post-hoc and
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Claims: currently no general 
faithfulness metric for 

natural language explanations

163



Integrated Gradient



Integrated Gradient axioms

Sensitivity
If for every input and baseline that differ in one 
feature but have different predictions, then the 

differing feature should have non-zero attribution.

Implementation Invariance
The attributions are always identical for 
two functionally equivalent networks.

n

∑
i=1

ϕi(x, f ) = f(x)

Completeness

Attributions  for each feature  
should sum to the total value .

ϕi(x, f ) i
f(x)

n

∑
i=1

ϕi(x, f ) = f(x)



Integrated Gradient axioms

24

faithfulness for non-linear models, although it will relate to a first-order Taylor approximation
[38].

Input times gradient The simplest extension of (2.2) is to also consider the scale of x,
hence the extension x → ↑xp(c|x; ω) is sometimes preferred. Although, a counter-argument is
that x does not directly relate to the model, and this can therefore result in a less faithful
explanation [45].

Note that because x is a one-hot encoding, only one element per input word will be non-zero.
Therefore, instead of using a norm to reduce away the vocabulary dimension, it’s possible
to just select the non-zero element. Therefore, this variation can be a signed importance
measure.

Integrated gradient Parts of the input may be important but have zero gradients, for
example due to the truncation in ReLU(·). In such cases, the previous gradient-based methods
won’t show any attribution.

Sundararajan et al. [39] call this desirable sensitivity. Specifically, if there exists a combination
of x and baseline b (often an empty sequence), where the logit outputs of f(x; ω) and f(b; ω)
are di!erent, then the feature that changed should get a non-zero attribution.

Additionally, Sundararajan et al. [39] suggest the desirable completeness. Meaning, that the
sum of importance scores assigned to each token should equal the model output relative to
the baseline b.

To satisfy these desirables, Sundararajan et al. [39] propose integrated gradient as defined in
(2.3). This integrates the gradients between an uninformative baseline b and the observation
x [39].

Eintegrated-gradient(x, c) = (x ↓ b) →
1
k

k∑

i=1
↑x̃if(x̃i; ω)c, x̃i = b + i/k(x ↓ b),

where f(x; ω) is the model logits.
(2.3)

This approach has been successfully applied to NLP, where the uninformative baseline can be
an empty sentence, such as padding tokens [149].

Although Integrated Gradient has become a popular approach, it has recently received criticism
in computer vision (CV) community for not being faithful [14]. In NLP, Bastings et al. [91]
use synthetic NLP tasks and conclude its faithfulness is task- and model-dependent. Finally,
Bilodeau et al. [111] provide a theoretical framework that also says that this explanation will
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Shapely axioms

n

∑
i=1

ϕi(x, f ) = f(x)

Efficiency / Completeness

Attributions  for each player  
should sum to the total value .

ϕi(x, f ) i
f(x)

If two players  and  are identical, 
they should receive equal attribution.

a b
Symmetry

ϕa(x, f ) = ϕb(x, f )
if f(S ∪ {a}) = f(S ∪ {b})

∀S ⊆ x∖{a, b}

Null Player

ϕi(x, f ) = 0
if f(S ∪ {i}) = f(S)

∀S ⊆ x∖{i}

Attribution for a player  who doesn’t 
contribute is zero.

i

Additivity / Linearity

ϕi(x, f + g) = ϕi(x, f ) + ϕi(x, g)

If the value can be linearly decomposed a , 
the attributions  can be decomposed too.

f + g
ϕi(x, f )



Shapely

ϕi(x, f ) = ∑
S⊆x∖{i}

|S | !( |x | − |S | − 1)!
|x | ! (f(S ∪ {i}) − f(S))



Shapely Example

Passengers Cost Note
{∅} $0 No taxi ride, no costs
{Alice} $15 Standard fare to Alice’s & Bob’s place
{Bob} $25 Bob always insists on luxury taxis
{Charlie} $38 Charlie lives slightly further away
{Alice, Bob} $25 Bob always gets his way
{Alice, Charlie} $41 Drop off Alice first, then Charlie
{Bob, Charlie} $51 Drop off luxurious Bob first, then Charlie
{Alice, Bob, Charlie} $51 The full fare with all three of them

• $15 for Alice alone. 
• Alice and Bob live together, but Bob wants a luxurious tax, adding 10$. 
• Charlie lives further away, increases the cost to $51.



Shapely Example
Passengers Cost
{∅} $0
{Alice} $15
{Bob} $25
{Charlie} $38
{Alice, Bob} $25
{Alice, Charlie} $41
{Bob, Charlie} $51
{Alice, Bob, Charlie} $51

1. Consider every order of Alice, Bob, Charlie.

• Alice, Bob, Charlie 
• Alice, Charlie, Bob 
• Bob, Alice, Charlie 
• Charlie, Alice, Bob 
• Bob, Charlie, Alice 
• Charlie, Bob, Alice



Shapely Example
Passengers Cost
{∅} $0
{Alice} $15
{Bob} $25
{Charlie} $38
{Alice, Bob} $25
{Alice, Charlie} $41
{Bob, Charlie} $51
{Alice, Bob, Charlie} $51

1. Consider every order of Alice, Bob, Charlie. 

2. Consider Alice is the last to enter the taxi.

• Alice, Bob, Charlie 
• Alice, Charlie, Bob 
• Bob, Alice, Charlie 
• Charlie, Alice, Bob 
• Bob, Charlie, Alice 
• Charlie, Bob, Alice



Shapely Example
Passengers Cost
{∅} $0
{Alice} $15
{Bob} $25
{Charlie} $38
{Alice, Bob} $25
{Alice, Charlie} $41
{Bob, Charlie} $51
{Alice, Bob, Charlie} $51

1. Consider every order of Alice, Bob, Charlie. 

2. Consider Alice is the last to enter the taxi. 

3. Average up Alice’s contributions. 

• Alice, Bob, Charlie 
• Alice, Charlie, Bob 
• Bob, Alice, Charlie 
• Charlie, Alice, Bob 
• Bob, Charlie, Alice 
• Charlie, Bob, Alice

{∅} → {Alice} = $15 
{∅} → {Alice} = $15 
{Bob} → {Alice, Bob} = $0 
{Charlie} → {Alice, Charlie} = $3  
{Bob, Charlie} → {Alice, Bob, Charlie} = $0 
{Bob, Charlie} → {Alice, Bob, Charlie} = $0
Average: $5.5



Background / Baseline data

• {Alice} 
• {Bob, Alice} 
• {Charlie, Alice}

{Charlie, Bob, Alice}

https://mindfulmodeler.substack.com/p/shedding-light-on-impossibility-theorems



Visualization

https://shap.readthedocs.io/en/latest/


